(01)
もう一度、書くものの、
1 (1)象は鼻が長い。 A
1 (〃)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)} A
2 (2)兎の耳は長いが、兎の耳は鼻ではない。 A
2 (〃)∀x{兎x→∃y(耳yx&長y)&∀z(耳zx→~鼻zx)} A
3 (3)ある兎は象である。 A
3 (〃)∃x(兎x&象x) A
3 (〃)あるxは兎であって象である。 A
1 (4) 象a→∃y(鼻ya&長y)&∀z(~鼻za→~長z) 1UE
2 (5) 兎a→∃y(耳ya&長y)&∀z(耳za→~鼻za) 1UE
6 (6) 兎a&象a A
6 (7) 兎a 6&E
6 (8) 象a 6&E
1 6 (9) ∃y(鼻ya&長y)&∀z(~鼻za→~長z) 47MPP
2 6 (ア) ∃y(耳ya&長y)&∀z(耳za→~鼻za) 58MPP
1 6 (イ) ∃y(鼻ya&長y) 9&E
2 6 (ウ) ∃y(耳ya&長y) ア&E
エ (エ) 鼻ba&長b A
オ(オ) 耳ba&長b A
1 6 (カ) ∀z(~鼻za→~長z) 9&E
1 6 (キ) ~鼻ba→~長b カUE
2 6 (ク) ∀z(耳za→~鼻za) ア&E
2 6 (ケ) 耳ba→~鼻ba クUE
オ (コ) 耳ba オ&E
2 6オ (サ) ~鼻ba ケコMPP
12 6オ (シ) ~長b キサコMPP
オ (ス) 長b オ&E
12 6オ (セ) 長b&~長b シス&I
12 6 (ソ) 長b&~長b ウオセEE
123 (タ) 長b&~長b 36ソEE
12 (チ)~∃x(兎x&象x) 3タRAA
12 (ツ)∀x~(兎x&象x) チ量化子の関係
12 (テ) ~(兎a&象a) ツUE
12 (ト) ~兎a∨~象a テ、ド・モルガンの法則
12 (ナ) 兎a→~象a ト含意の定義
12 (ニ)∀x(兎x→~象x) ナUI
12 (〃)すべてのxについて、xが兎であるならば、xは象ではない。 ナUI
12 (〃)兎は象ではない。 ナUI
従って、
(01)により、
(02)
(1)象は鼻が長い。
(2)兎の耳は長いが、兎の耳は鼻ではない。
(3)ある兎は象である。
といふ風に「仮定」すると、
(タ)の行で、「矛盾」が生じるため、
(1)と(2)を、「否定」しないならば、「背理法」により、
(3)ある兎は象である。
といふ「仮定」が「否定」され、その「結果」として、
(3)兎は象ではない。
といふ「結論」を得ることになる。
従って、
(02)により、
(03)
(1)象は鼻が長い。然るに、
(2)兎の耳は長いが、兎の耳は鼻ではない。故に、
(3)兎は象ではない。
といふ「推論(三段論法)」を行ひたいのであれば、
(1)象は鼻が長い。
といふ「日本語」は、
(1)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
といふ風に、「翻訳」することになる。
然るに、
(04)
1 (1)象以外の鼻は長くない。 A
1 (〃)∀x{~象x→~∃y(鼻yx&長y)} A
2 (2)∀x( 兎x→~象x) A
2 (〃)兎は象ではない。 A
1 (3) ~象a→~∃y(鼻ya&長y) 1UE
2 (4) 兎a→~象a 2UE
5(5) 兎a A
25(6) ~象a 45
125(7) ~∃y(鼻ya&長y) 36MPP
125(8) ∀y~(鼻ya&長y) 7量化子の関係
125(9) ~(鼻ba&長b) 8UE
125(ア) ~鼻ba∨~長b ド・モルガンの法則
125(イ) 鼻ba→~長b ア含意の定義
125(ウ) ∀y(鼻ya→~長y) イUI
12 (エ) 兎a→∀y(鼻ya→~長y) 5ウCP
12 (オ)∀x{ 兎x→∀y(鼻yx→~長y)} エUI
12 (〃)すべてのxについて{xが兎であるならば、すべてのyについて(yがxの鼻であるならば、yは長くない)}。 エUI
12 (〃)xが兎であって、yがxの鼻であるならば、yは長くない。 エUI
12 (〃)兎の鼻は長くない。 エUI
従って、
(04)により、
(05)
(1)象以外の鼻は長くない。
(2)兎は象ではない。
といふ風に、「仮定」すると、当然ではあるが、
(3)兎の鼻は長くない。
といふ「結論」を得ることになる。
然るに、
(06)
{象、兎、猫、犬、馬}を、「変域」とするならば、事実として、
{象}以外の鼻は長くない。
然るに、
(07)
{象}以外の鼻は長くない。
といふことは、
{象が}鼻は長い。
といふことである。
従って、
(04)(07)により、
(08)
1 (1)象が鼻は長い。 A
1 (〃)象以外の鼻は長くない。 A
1 (〃)∀x{~象x→~∃y(鼻yx&長y)} A
である。
従って、
(05)~(08)により、
(09)
(1)象が鼻は長い。然るに、
(2)兎は象ではない。故に、
(3)兎の鼻は長くない。
といふ「推論(三段論法)」を行ひたいのであれば、
(1)象が鼻は長い。
といふ「日本語」は、
(1)∀x{~象x→~∃y(鼻yx&長y)}。
といふ風に、「翻訳」することになる。
然るに、
(10)
(a)
1 (1)∀x{~象x→~∃y(鼻yx&長y)} A
1 (2) ~象a→~∃y(鼻ya&長y) UE
3 (3) ~象a A
4(4) ∃y(鼻yx&長y) A
13 (5) ~∃y(鼻ya&長y) 23MPP
134(6) ∃y(鼻ya&長y)&
~∃y(鼻ya&長y) 45&I
1 4(7) ~~象a 36RAA
1 4(8) 象a 7DN
1 (9) ∃y(鼻yx&長y)→象a 48CP
1 (ア)∀x{ ∃y(鼻yx&長y)→象x} 9UI
(b)
1 (1)∀x{ ∃y(鼻yx&長y)→象x} A
1 (2) ∃y(鼻ya&長y)→象a 1UE
3 (3) ∃y(鼻ya&長y) A
4(4) ~象a A
13 (5) 象a 23MPP
134(6) ~象a&象a 45&I
1 4(7) ~∃y(鼻ya&長y) 36RAA
1 (8) ~象a→~∃y(鼻ya&長y) 47CP
1 (9)∀x{~象x→~∃y(鼻yx&長y)} 8UI
従って、
(10)により、
(11)
(a)∀x{~象x→~∃y(鼻yx&長y)}。
(b)∀x{ ∃y(鼻yx&長y)→ 象x}。
といふ「対偶」に於いて、
(a)=(b) である。
従って、
(09)(10)(11)により、
(12)
(1)象が鼻は長い。然るに、
(2)兎は象ではない。故に、
(3)兎の鼻は長くない。
といふ「推論(三段論法)」を行ひたいのであれば、
(1)象が鼻は長い。
といふ「日本語」は、
(1)∀x{∃y(鼻yx&長y)→象x}。
(〃)すべてのxについて{あるyがxの鼻であって、yが長いのであれば、xは象である}。
といふ風に、「翻訳」することになる。
然るに、
(13)
(a)
1(1)∀x{象x→∃y(鼻yx&長y)}&∀x{∃y(鼻yx&長y)→象x} A
1(2)∀x{象x→∃y(鼻yx&長y)} 1&E
1(3) 象a→∃y(鼻ya&長y) 2UE
1(4) ∀x{∃y(鼻yx&長y)→象x} 1&E
1(5) ∃y(鼻ya&長y)→象a 4UE
1(6) 象a→∃y(鼻ya&長y)&∃y(鼻ya&長y)→象a 35&I
1(7)∀x{象x→∃y(鼻yx&長y)&∃y(鼻yx&長y)→象x} 6UI
(b)
1(1)∀x{象x→∃y(鼻yx&長y)&∃y(鼻yx&長y)→象x} A
1(2) 象a→∃y(鼻ya&長y)&∃y(鼻ya&長y)→象a 1UE
1(3) 象a→∃y(鼻ya&長y) 2&E
1(4)∀x{象a→∃y(鼻ya&長y)} 3UI
1(5) ∃y(鼻yx&長y)→象x 2&E
1(6) ∀x{∃y(鼻yx&長y)→象x} 5UI
1(7)∀x{象x→∃y(鼻yx&長y)}&∀x{∃y(鼻yx&長y)→象x} 46&I
従って、
(13)により、
(14)
(a)∀x{象x→∃y(鼻yx&長y)}&∀x{∃y(鼻yx&長y)→象x}
(b)∀x{象x→∃y(鼻yx&長y) & ∃y(鼻yx&長y)→象x}
に於いて、
(a)=(b) である。
然るに、
(15)
Pであるときまたそのときに限ってQ(Q if and only if P)を主張することは、PならばQと、QならばPを主張することにほかならない。
すなわち記号で書けば、
(P→Q)&(Q→P)
である。しかしこの複合的表現を用ゐるよりは、
P⇔Q
と書くのが便利であろう(論理学初歩、E.J.レモン、竹尾 治一郎・浅野 楢英 訳、1973年、38頁)。
従って、
(14)(15)により、
(16)
P⇔Q は、
(P→Q)&(Q→P) の、「代はり」であるため、
(a)∀x{象x→∃y(鼻yx&長y)}&∀x{∃y(鼻yx&長y)→象x}
(b)∀x{象x→∃y(鼻yx&長y) & ∃y(鼻yx&長y)→象x}
(c)∀x{象x⇔∃y(鼻yx&長y)}
に於いて、
(a)=(b)=(c) である。
従って、
(16)により、
(17)
1 (1) 象が鼻は長い。 A
1 (〃) ∀x{象x⇔∃y(鼻yx&長y)} A
1 (2) 象a⇔∃y(鼻ya&長y) 1UE
1 (3) 象a→∃y(鼻ya&長y)&
∃y(鼻ya&長y)→ 象a 4Df.⇔
1 (4) ∃y(鼻ya&長y)→ 象a 4&E
5 (5) ~象a A
15 (6) ~∃y(鼻ya&長y) 45MTT
1 (7) ~象a→~∃y(鼻ya&長y) 56CP
1 (8)∀x{~象a→~∃y(鼻ya&長y)} 7UI
従って、
(04)(17)により、
(18)
1 (1)象が鼻は長い。 A
1 (〃)象以外の鼻は長くない。 A
1 (〃)∀x{~象x→~∃y(鼻yx&長y)} A
2 (2)∀x( 兎x→~象x) A
2 (〃)兎は象ではない。 A
1 (3) ~象a→~∃y(鼻ya&長y) 1UE
2 (4) 兎a→~象a 2UE
5(5) 兎a A
25(6) ~象a 45
125(7) ~∃y(鼻ya&長y) 36MPP
125(8) ∀y~(鼻ya&長y) 7量化子の関係
125(9) ~(鼻ba&長b) 8UE
125(ア) ~鼻ba∨~長b ド・モルガンの法則
125(イ) 鼻ba→~長b ア含意の定義
125(ウ) ∀y(鼻ya→~長y) イUI
12 (エ) 兎a→∀y(鼻ya→~長y) 5ウCP
12 (オ)∀x{ 兎x→∀y(鼻yx→~長y)} エUI
12 (〃)すべてのxについて{xが兎であるならば、すべてのyについて(yがxの鼻であるならば、yは長くない)}。 エUI
12 (〃)xが兎であって、yがxの鼻であるならば、yは長くない。 エUI
といふ「計算」の、
1 (1)象が鼻は長い。 A
1 (〃)∀x{~象x→~∃y(鼻yx&長y)} A
といふ「仮定」を、
1 (1) 象が鼻は長い。 A
1 (〃) ∀x{象x⇔∃y(鼻yx&長y)} A
といふ「仮定」に、「差し替へ」たとしても、「結論」は「同じ」である。
従って、
(12)(18)により、
(19)
(1)象が鼻は長い。然るに、
(2)兎は象ではない。故に、
(3)兎の鼻は長くない。
といふ「推論(三段論法)」を行ひたいのであれば、
(1)象が鼻は長い。
といふ「日本語」は、
(1)∀x{象x⇔∃y(鼻yx&長y)}
(〃)すべてのxについて{xが象であるならば、そのときに限って、あるyはxの鼻であって、yは長い}。
といふ風に、「翻訳」することになる。
然るに、
(01)(16)により、
(20)
1 (1)象が鼻が長い。 A
1 (〃)∀x{象x⇔∃y(鼻yx&長y)&∀z(~鼻zx→~長z)} A
1 (2) 象a⇔∃y(鼻ya&長y)&∀z(~鼻za→~長z) 1UE
1 (3) 象a→∃y(鼻ya&長y)&∃y(鼻ya&長y)→象a&∀z(~鼻za→~長z) 2Df.⇔
1 (4) 象a→∃y(鼻ya&長y) 3&E
1 (5) 象a&∀z(~鼻za→~長z) 3&E
1 (6) 象a→∃y(鼻ya&長y)&∀z(~鼻za→~長z) 45&I
1 (7)∀x{象a→∃y(鼻ya&長y)&∀z(~鼻za→~長z) 6UI
従って、
(01)(20)により、
(21)
1 (1)象は鼻が長い。 A
1 (〃)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)} A
2 (2)兎の耳は長いが、兎の耳は鼻ではない。 A
2 (〃)∀x{兎x→∃y(耳yx&長y)&∀z(耳zx→~鼻zx)} A
3 (3)ある兎は象である。 A
3 (〃)∃x(兎x&象x) A
3 (〃)あるxは兎であって象である。 A
1 (4) 象a→∃y(鼻ya&長y)&∀z(~鼻za→~長z) 1UE
2 (5) 兎a→∃y(耳ya&長y)&∀z(耳za→~鼻za) 1UE
6 (6) 兎a&象a A
6 (7) 兎a 6&E
6 (8) 象a 6&E
1 6 (9) ∃y(鼻ya&長y)&∀z(~鼻za→~長z) 47MPP
2 6 (ア) ∃y(耳ya&長y)&∀z(耳za→~鼻za) 58MPP
1 6 (イ) ∃y(鼻ya&長y) 9&E
2 6 (ウ) ∃y(耳ya&長y) ア&E
エ (エ) 鼻ba&長b A
オ(オ) 耳ba&長b A
1 6 (カ) ∀z(~鼻za→~長z) 9&E
1 6 (キ) ~鼻ba→~長b カUE
2 6 (ク) ∀z(耳za→~鼻za) ア&E
2 6 (ケ) 耳ba→~鼻ba クUE
オ (コ) 耳ba オ&E
2 6オ (サ) ~鼻ba ケコMPP
12 6オ (シ) ~長b キサコMPP
オ (ス) 長b オ&E
12 6オ (セ) 長b&~長b シス&I
12 6 (ソ) 長b&~長b ウオセEE
123 (タ) 長b&~長b 36ソEE
12 (チ)~∃x(兎x&象x) 3タRAA
12 (ツ)∀x~(兎x&象x) チ量化子の関係
12 (テ) ~(兎a&象a) ツUE
12 (ト) ~兎a∨~象a テ、ド・モルガンの法則
12 (ナ) 兎a→~象a ト含意の定義
12 (ニ)∀x(兎x→~象x) ナUI
12 (〃)すべてのxについて、xが兎であるならば、xは象ではない。 ナUI
12 (〃)兎は象ではない。 ナUI
といふ「計算」の、
1 (1)象は鼻が長い。 A
1 (〃)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)} A
といふ「仮定」を、
1 (1)象が鼻が長い。 A
1 (〃)∀x{象x⇔∃y(鼻yx&長y)&∀z(~鼻zx→~長z)} A
といふ「仮定」に、「差し替へ」たとしても、「結論」は「同じ」である。
従って、
(03)(21)により、
(22)
(1)象が鼻が長い。然るに、
(2)兎の耳は長いが、兎の耳は鼻ではない。故に、
(3)兎は象ではない。
といふ「推論(三段論法)」を行ひたいのであれば、
(1)象が鼻が長い。
といふ「日本語」は、
(1)∀x{象x⇔∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
といふ風に、「翻訳」することになる。
然るに、
(23)
(1)象が鼻は長い。然るに、
(2)兎は象ではない。故に、
(3)兎の鼻は長くない。
といふ「推論(三段論法)」や、
(1)象が鼻が長い。然るに、
(2)兎の耳は長いが、兎の耳は鼻ではない。故に、
(3)兎は象ではない。
といふ「推論(三段論法)」は、明らかに、「妥当(Valid)」である。
然るに、
(24)
(1)∀x{象x⇔∃y(鼻yx&長y)}。然るに、
(2)∀x(兎x→~象x)。故に、
(3)∀x{兎x→∀y(鼻yx→~長y)}。
といふ「推論(三段論法)」や、
(1)∀x{象x⇔∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。然るに、
(2)∀x{兎x→∃y(耳yx&長y)&∀z(耳zx→~鼻zx)}。故に、
(3)∀x(兎x→~象x)。
といふ「推論(三段論法)」も、「妥当(Valid)」である。
従って、
(18)(20)(23)(24)により、
(25)
(1)象が鼻は長い。
(2)兎は象ではない。
(3)兎の鼻は長くない。
といふ「日本語」が、
(1)∀x{象x⇔∃y(鼻yx&長y)}。
(2)∀x(兎x→~象x)。
(3)∀x{兎x→∀y(鼻yx→~長y)}。
といふ「述語論理」に、対応せず、
(1)象は鼻が長い。
(2)兎の耳は長いが、兎の耳は鼻ではない。
(3)兎は象ではない。
といふ「日本語」が、、
(1)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
(2)∀x{兎x→∃y(耳yx&長y)&∀z(耳zx→~鼻zx)}。
(3)∀x(兎x→~象x)。
といふ「述語論理」に、対応しない。
といふことは、有り得ない。と、言ふべきである。
然るに、
(01)により、
(26)
(1)象は鼻が長い。
(〃)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
(〃)すべてxについて{xが象であるならば、あるyはxの鼻であって、そのyは長く、あるzがxの鼻でなく、尚且つ、長い。といふことはない}。
従って、
(26)により、
(27)
(1)∀x{象x→
(〃)すべてxについて{xが象であるならば、
といふ風に、最初に、言明してゐるため、
(1)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
(〃)すべてxについて{xが象であるならば、あるyはxの鼻であって、そのyは長く、あるzがxの鼻でなく、尚且つ、長い。といふことはない}。
といふ「文」は、「最初に、その文の内容の範囲を、象に、限定してゐる」。
然るに、
(28)
(Ⅰ)象が鼻が長い。
(〃)∀x{象x⇔∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
(〃)∀x{象x→∃y(鼻yx&長y&)&~象x→~∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
(〃)すべてxについて{xが象であるならば、あるyがxの鼻であって、yが長く、xが象でないならば、あるyはxの鼻であって、そのyは長くなく、あるzがxの鼻でなく、尚且つ、長い。といふことはない}。
従って、
(28)により、
(29)
(Ⅰ)∀x{象x⇔
(〃)∀x{象x→ & ~象x→
(〃)すべてxについて{xが象であるならば、& xが象でないならば、
といふ風に、最初に、言明してゐるため、
(Ⅰ)象が鼻が長い。
(〃)∀x{象x⇔∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
(〃)∀x{象x→∃y(鼻yx&長y&)&~象x→~∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
(〃)すべてxについて{xが象であるならば、あるyがxの鼻であって、yが長く、xが象でないならば、あるyはxの鼻であって、そのyは長くなく、あるzがxの鼻でなく、尚且つ、長い。といふことはない}。
といふ「文」は、「最初に、その文の内容の範囲を、象に、限定してゐる」とは、言へない。
然るに、
(30)
「は」の基本的な性質は、主題を表すことです。主題というのは文の最初にあって、その文で述べる内容の範囲を限定するものです。
(白川博之 監修、中上級を教える人のための、日本語文法ハンドブック、2001年、314頁)
従って、
(26)~(30)により、
(31)
主題というのは文の最初にあって、その文で述べる内容の範囲を限定するものです。
といふ「定義」からすれば、
(1)象は鼻が長い。
(〃)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
(〃)すべてxについて{xが象であるならば、あるyはxの鼻であって、そのyは長く、あるzがxの鼻でなく、尚且つ、長い。といふことはない}。
といふ「日本語」に於いて、「象は」は、「主題は」であるが、
(Ⅰ)象が鼻が長い。
(〃)∀x{象x⇔∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
(〃)∀x{象x→∃y(鼻yx&長y&)&~象x→~∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
(〃)すべてxについて{xが象であるならば、あるyがxの鼻であって、yが長く、xが象でないならば、あるyはxの鼻であって、そのyは長くなく、あるzがxの鼻でなく、尚且つ、長い。といふことは
といふ「日本語」に於いて、「象が」は、「主題が」ではない。
もう一度、書くものの、
1 (1)象は鼻が長い。 A
1 (〃)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)} A
2 (2)兎の耳は長いが、兎の耳は鼻ではない。 A
2 (〃)∀x{兎x→∃y(耳yx&長y)&∀z(耳zx→~鼻zx)} A
3 (3)ある兎は象である。 A
3 (〃)∃x(兎x&象x) A
3 (〃)あるxは兎であって象である。 A
1 (4) 象a→∃y(鼻ya&長y)&∀z(~鼻za→~長z) 1UE
2 (5) 兎a→∃y(耳ya&長y)&∀z(耳za→~鼻za) 1UE
6 (6) 兎a&象a A
6 (7) 兎a 6&E
6 (8) 象a 6&E
1 6 (9) ∃y(鼻ya&長y)&∀z(~鼻za→~長z) 47MPP
2 6 (ア) ∃y(耳ya&長y)&∀z(耳za→~鼻za) 58MPP
1 6 (イ) ∃y(鼻ya&長y) 9&E
2 6 (ウ) ∃y(耳ya&長y) ア&E
エ (エ) 鼻ba&長b A
オ(オ) 耳ba&長b A
1 6 (カ) ∀z(~鼻za→~長z) 9&E
1 6 (キ) ~鼻ba→~長b カUE
2 6 (ク) ∀z(耳za→~鼻za) ア&E
2 6 (ケ) 耳ba→~鼻ba クUE
オ (コ) 耳ba オ&E
2 6オ (サ) ~鼻ba ケコMPP
12 6オ (シ) ~長b キサコMPP
オ (ス) 長b オ&E
12 6オ (セ) 長b&~長b シス&I
12 6 (ソ) 長b&~長b ウオセEE
123 (タ) 長b&~長b 36ソEE
12 (チ)~∃x(兎x&象x) 3タRAA
12 (ツ)∀x~(兎x&象x) チ量化子の関係
12 (テ) ~(兎a&象a) ツUE
12 (ト) ~兎a∨~象a テ、ド・モルガンの法則
12 (ナ) 兎a→~象a ト含意の定義
12 (ニ)∀x(兎x→~象x) ナUI
12 (〃)すべてのxについて、xが兎であるならば、xは象ではない。 ナUI
12 (〃)兎は象ではない。 ナUI
従って、
(01)により、
(02)
(1)象は鼻が長い。
(2)兎の耳は長いが、兎の耳は鼻ではない。
(3)ある兎は象である。
といふ風に「仮定」すると、
(タ)の行で、「矛盾」が生じるため、
(1)と(2)を、「否定」しないならば、「背理法」により、
(3)ある兎は象である。
といふ「仮定」が「否定」され、その「結果」として、
(3)兎は象ではない。
といふ「結論」を得ることになる。
従って、
(02)により、
(03)
(1)象は鼻が長い。然るに、
(2)兎の耳は長いが、兎の耳は鼻ではない。故に、
(3)兎は象ではない。
といふ「推論(三段論法)」を行ひたいのであれば、
(1)象は鼻が長い。
といふ「日本語」は、
(1)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
といふ風に、「翻訳」することになる。
然るに、
(04)
1 (1)象以外の鼻は長くない。 A
1 (〃)∀x{~象x→~∃y(鼻yx&長y)} A
2 (2)∀x( 兎x→~象x) A
2 (〃)兎は象ではない。 A
1 (3) ~象a→~∃y(鼻ya&長y) 1UE
2 (4) 兎a→~象a 2UE
5(5) 兎a A
25(6) ~象a 45
125(7) ~∃y(鼻ya&長y) 36MPP
125(8) ∀y~(鼻ya&長y) 7量化子の関係
125(9) ~(鼻ba&長b) 8UE
125(ア) ~鼻ba∨~長b ド・モルガンの法則
125(イ) 鼻ba→~長b ア含意の定義
125(ウ) ∀y(鼻ya→~長y) イUI
12 (エ) 兎a→∀y(鼻ya→~長y) 5ウCP
12 (オ)∀x{ 兎x→∀y(鼻yx→~長y)} エUI
12 (〃)すべてのxについて{xが兎であるならば、すべてのyについて(yがxの鼻であるならば、yは長くない)}。 エUI
12 (〃)xが兎であって、yがxの鼻であるならば、yは長くない。 エUI
12 (〃)兎の鼻は長くない。 エUI
従って、
(04)により、
(05)
(1)象以外の鼻は長くない。
(2)兎は象ではない。
といふ風に、「仮定」すると、当然ではあるが、
(3)兎の鼻は長くない。
といふ「結論」を得ることになる。
然るに、
(06)
{象、兎、猫、犬、馬}を、「変域」とするならば、事実として、
{象}以外の鼻は長くない。
然るに、
(07)
{象}以外の鼻は長くない。
といふことは、
{象が}鼻は長い。
といふことである。
従って、
(04)(07)により、
(08)
1 (1)象が鼻は長い。 A
1 (〃)象以外の鼻は長くない。 A
1 (〃)∀x{~象x→~∃y(鼻yx&長y)} A
である。
従って、
(05)~(08)により、
(09)
(1)象が鼻は長い。然るに、
(2)兎は象ではない。故に、
(3)兎の鼻は長くない。
といふ「推論(三段論法)」を行ひたいのであれば、
(1)象が鼻は長い。
といふ「日本語」は、
(1)∀x{~象x→~∃y(鼻yx&長y)}。
といふ風に、「翻訳」することになる。
然るに、
(10)
(a)
1 (1)∀x{~象x→~∃y(鼻yx&長y)} A
1 (2) ~象a→~∃y(鼻ya&長y) UE
3 (3) ~象a A
4(4) ∃y(鼻yx&長y) A
13 (5) ~∃y(鼻ya&長y) 23MPP
134(6) ∃y(鼻ya&長y)&
~∃y(鼻ya&長y) 45&I
1 4(7) ~~象a 36RAA
1 4(8) 象a 7DN
1 (9) ∃y(鼻yx&長y)→象a 48CP
1 (ア)∀x{ ∃y(鼻yx&長y)→象x} 9UI
(b)
1 (1)∀x{ ∃y(鼻yx&長y)→象x} A
1 (2) ∃y(鼻ya&長y)→象a 1UE
3 (3) ∃y(鼻ya&長y) A
4(4) ~象a A
13 (5) 象a 23MPP
134(6) ~象a&象a 45&I
1 4(7) ~∃y(鼻ya&長y) 36RAA
1 (8) ~象a→~∃y(鼻ya&長y) 47CP
1 (9)∀x{~象x→~∃y(鼻yx&長y)} 8UI
従って、
(10)により、
(11)
(a)∀x{~象x→~∃y(鼻yx&長y)}。
(b)∀x{ ∃y(鼻yx&長y)→ 象x}。
といふ「対偶」に於いて、
(a)=(b) である。
従って、
(09)(10)(11)により、
(12)
(1)象が鼻は長い。然るに、
(2)兎は象ではない。故に、
(3)兎の鼻は長くない。
といふ「推論(三段論法)」を行ひたいのであれば、
(1)象が鼻は長い。
といふ「日本語」は、
(1)∀x{∃y(鼻yx&長y)→象x}。
(〃)すべてのxについて{あるyがxの鼻であって、yが長いのであれば、xは象である}。
といふ風に、「翻訳」することになる。
然るに、
(13)
(a)
1(1)∀x{象x→∃y(鼻yx&長y)}&∀x{∃y(鼻yx&長y)→象x} A
1(2)∀x{象x→∃y(鼻yx&長y)} 1&E
1(3) 象a→∃y(鼻ya&長y) 2UE
1(4) ∀x{∃y(鼻yx&長y)→象x} 1&E
1(5) ∃y(鼻ya&長y)→象a 4UE
1(6) 象a→∃y(鼻ya&長y)&∃y(鼻ya&長y)→象a 35&I
1(7)∀x{象x→∃y(鼻yx&長y)&∃y(鼻yx&長y)→象x} 6UI
(b)
1(1)∀x{象x→∃y(鼻yx&長y)&∃y(鼻yx&長y)→象x} A
1(2) 象a→∃y(鼻ya&長y)&∃y(鼻ya&長y)→象a 1UE
1(3) 象a→∃y(鼻ya&長y) 2&E
1(4)∀x{象a→∃y(鼻ya&長y)} 3UI
1(5) ∃y(鼻yx&長y)→象x 2&E
1(6) ∀x{∃y(鼻yx&長y)→象x} 5UI
1(7)∀x{象x→∃y(鼻yx&長y)}&∀x{∃y(鼻yx&長y)→象x} 46&I
従って、
(13)により、
(14)
(a)∀x{象x→∃y(鼻yx&長y)}&∀x{∃y(鼻yx&長y)→象x}
(b)∀x{象x→∃y(鼻yx&長y) & ∃y(鼻yx&長y)→象x}
に於いて、
(a)=(b) である。
然るに、
(15)
Pであるときまたそのときに限ってQ(Q if and only if P)を主張することは、PならばQと、QならばPを主張することにほかならない。
すなわち記号で書けば、
(P→Q)&(Q→P)
である。しかしこの複合的表現を用ゐるよりは、
P⇔Q
と書くのが便利であろう(論理学初歩、E.J.レモン、竹尾 治一郎・浅野 楢英 訳、1973年、38頁)。
従って、
(14)(15)により、
(16)
P⇔Q は、
(P→Q)&(Q→P) の、「代はり」であるため、
(a)∀x{象x→∃y(鼻yx&長y)}&∀x{∃y(鼻yx&長y)→象x}
(b)∀x{象x→∃y(鼻yx&長y) & ∃y(鼻yx&長y)→象x}
(c)∀x{象x⇔∃y(鼻yx&長y)}
に於いて、
(a)=(b)=(c) である。
従って、
(16)により、
(17)
1 (1) 象が鼻は長い。 A
1 (〃) ∀x{象x⇔∃y(鼻yx&長y)} A
1 (2) 象a⇔∃y(鼻ya&長y) 1UE
1 (3) 象a→∃y(鼻ya&長y)&
∃y(鼻ya&長y)→ 象a 4Df.⇔
1 (4) ∃y(鼻ya&長y)→ 象a 4&E
5 (5) ~象a A
15 (6) ~∃y(鼻ya&長y) 45MTT
1 (7) ~象a→~∃y(鼻ya&長y) 56CP
1 (8)∀x{~象a→~∃y(鼻ya&長y)} 7UI
従って、
(04)(17)により、
(18)
1 (1)象が鼻は長い。 A
1 (〃)象以外の鼻は長くない。 A
1 (〃)∀x{~象x→~∃y(鼻yx&長y)} A
2 (2)∀x( 兎x→~象x) A
2 (〃)兎は象ではない。 A
1 (3) ~象a→~∃y(鼻ya&長y) 1UE
2 (4) 兎a→~象a 2UE
5(5) 兎a A
25(6) ~象a 45
125(7) ~∃y(鼻ya&長y) 36MPP
125(8) ∀y~(鼻ya&長y) 7量化子の関係
125(9) ~(鼻ba&長b) 8UE
125(ア) ~鼻ba∨~長b ド・モルガンの法則
125(イ) 鼻ba→~長b ア含意の定義
125(ウ) ∀y(鼻ya→~長y) イUI
12 (エ) 兎a→∀y(鼻ya→~長y) 5ウCP
12 (オ)∀x{ 兎x→∀y(鼻yx→~長y)} エUI
12 (〃)すべてのxについて{xが兎であるならば、すべてのyについて(yがxの鼻であるならば、yは長くない)}。 エUI
12 (〃)xが兎であって、yがxの鼻であるならば、yは長くない。 エUI
といふ「計算」の、
1 (1)象が鼻は長い。 A
1 (〃)∀x{~象x→~∃y(鼻yx&長y)} A
といふ「仮定」を、
1 (1) 象が鼻は長い。 A
1 (〃) ∀x{象x⇔∃y(鼻yx&長y)} A
といふ「仮定」に、「差し替へ」たとしても、「結論」は「同じ」である。
従って、
(12)(18)により、
(19)
(1)象が鼻は長い。然るに、
(2)兎は象ではない。故に、
(3)兎の鼻は長くない。
といふ「推論(三段論法)」を行ひたいのであれば、
(1)象が鼻は長い。
といふ「日本語」は、
(1)∀x{象x⇔∃y(鼻yx&長y)}
(〃)すべてのxについて{xが象であるならば、そのときに限って、あるyはxの鼻であって、yは長い}。
といふ風に、「翻訳」することになる。
然るに、
(01)(16)により、
(20)
1 (1)象が鼻が長い。 A
1 (〃)∀x{象x⇔∃y(鼻yx&長y)&∀z(~鼻zx→~長z)} A
1 (2) 象a⇔∃y(鼻ya&長y)&∀z(~鼻za→~長z) 1UE
1 (3) 象a→∃y(鼻ya&長y)&∃y(鼻ya&長y)→象a&∀z(~鼻za→~長z) 2Df.⇔
1 (4) 象a→∃y(鼻ya&長y) 3&E
1 (5) 象a&∀z(~鼻za→~長z) 3&E
1 (6) 象a→∃y(鼻ya&長y)&∀z(~鼻za→~長z) 45&I
1 (7)∀x{象a→∃y(鼻ya&長y)&∀z(~鼻za→~長z) 6UI
従って、
(01)(20)により、
(21)
1 (1)象は鼻が長い。 A
1 (〃)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)} A
2 (2)兎の耳は長いが、兎の耳は鼻ではない。 A
2 (〃)∀x{兎x→∃y(耳yx&長y)&∀z(耳zx→~鼻zx)} A
3 (3)ある兎は象である。 A
3 (〃)∃x(兎x&象x) A
3 (〃)あるxは兎であって象である。 A
1 (4) 象a→∃y(鼻ya&長y)&∀z(~鼻za→~長z) 1UE
2 (5) 兎a→∃y(耳ya&長y)&∀z(耳za→~鼻za) 1UE
6 (6) 兎a&象a A
6 (7) 兎a 6&E
6 (8) 象a 6&E
1 6 (9) ∃y(鼻ya&長y)&∀z(~鼻za→~長z) 47MPP
2 6 (ア) ∃y(耳ya&長y)&∀z(耳za→~鼻za) 58MPP
1 6 (イ) ∃y(鼻ya&長y) 9&E
2 6 (ウ) ∃y(耳ya&長y) ア&E
エ (エ) 鼻ba&長b A
オ(オ) 耳ba&長b A
1 6 (カ) ∀z(~鼻za→~長z) 9&E
1 6 (キ) ~鼻ba→~長b カUE
2 6 (ク) ∀z(耳za→~鼻za) ア&E
2 6 (ケ) 耳ba→~鼻ba クUE
オ (コ) 耳ba オ&E
2 6オ (サ) ~鼻ba ケコMPP
12 6オ (シ) ~長b キサコMPP
オ (ス) 長b オ&E
12 6オ (セ) 長b&~長b シス&I
12 6 (ソ) 長b&~長b ウオセEE
123 (タ) 長b&~長b 36ソEE
12 (チ)~∃x(兎x&象x) 3タRAA
12 (ツ)∀x~(兎x&象x) チ量化子の関係
12 (テ) ~(兎a&象a) ツUE
12 (ト) ~兎a∨~象a テ、ド・モルガンの法則
12 (ナ) 兎a→~象a ト含意の定義
12 (ニ)∀x(兎x→~象x) ナUI
12 (〃)すべてのxについて、xが兎であるならば、xは象ではない。 ナUI
12 (〃)兎は象ではない。 ナUI
といふ「計算」の、
1 (1)象は鼻が長い。 A
1 (〃)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)} A
といふ「仮定」を、
1 (1)象が鼻が長い。 A
1 (〃)∀x{象x⇔∃y(鼻yx&長y)&∀z(~鼻zx→~長z)} A
といふ「仮定」に、「差し替へ」たとしても、「結論」は「同じ」である。
従って、
(03)(21)により、
(22)
(1)象が鼻が長い。然るに、
(2)兎の耳は長いが、兎の耳は鼻ではない。故に、
(3)兎は象ではない。
といふ「推論(三段論法)」を行ひたいのであれば、
(1)象が鼻が長い。
といふ「日本語」は、
(1)∀x{象x⇔∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
といふ風に、「翻訳」することになる。
然るに、
(23)
(1)象が鼻は長い。然るに、
(2)兎は象ではない。故に、
(3)兎の鼻は長くない。
といふ「推論(三段論法)」や、
(1)象が鼻が長い。然るに、
(2)兎の耳は長いが、兎の耳は鼻ではない。故に、
(3)兎は象ではない。
といふ「推論(三段論法)」は、明らかに、「妥当(Valid)」である。
然るに、
(24)
(1)∀x{象x⇔∃y(鼻yx&長y)}。然るに、
(2)∀x(兎x→~象x)。故に、
(3)∀x{兎x→∀y(鼻yx→~長y)}。
といふ「推論(三段論法)」や、
(1)∀x{象x⇔∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。然るに、
(2)∀x{兎x→∃y(耳yx&長y)&∀z(耳zx→~鼻zx)}。故に、
(3)∀x(兎x→~象x)。
といふ「推論(三段論法)」も、「妥当(Valid)」である。
従って、
(18)(20)(23)(24)により、
(25)
(1)象が鼻は長い。
(2)兎は象ではない。
(3)兎の鼻は長くない。
といふ「日本語」が、
(1)∀x{象x⇔∃y(鼻yx&長y)}。
(2)∀x(兎x→~象x)。
(3)∀x{兎x→∀y(鼻yx→~長y)}。
といふ「述語論理」に、対応せず、
(1)象は鼻が長い。
(2)兎の耳は長いが、兎の耳は鼻ではない。
(3)兎は象ではない。
といふ「日本語」が、、
(1)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
(2)∀x{兎x→∃y(耳yx&長y)&∀z(耳zx→~鼻zx)}。
(3)∀x(兎x→~象x)。
といふ「述語論理」に、対応しない。
といふことは、有り得ない。と、言ふべきである。
然るに、
(01)により、
(26)
(1)象は鼻が長い。
(〃)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
(〃)すべてxについて{xが象であるならば、あるyはxの鼻であって、そのyは長く、あるzがxの鼻でなく、尚且つ、長い。といふことはない}。
従って、
(26)により、
(27)
(1)∀x{象x→
(〃)すべてxについて{xが象であるならば、
といふ風に、最初に、言明してゐるため、
(1)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
(〃)すべてxについて{xが象であるならば、あるyはxの鼻であって、そのyは長く、あるzがxの鼻でなく、尚且つ、長い。といふことはない}。
といふ「文」は、「最初に、その文の内容の範囲を、象に、限定してゐる」。
然るに、
(28)
(Ⅰ)象が鼻が長い。
(〃)∀x{象x⇔∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
(〃)∀x{象x→∃y(鼻yx&長y&)&~象x→~∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
(〃)すべてxについて{xが象であるならば、あるyがxの鼻であって、yが長く、xが象でないならば、あるyはxの鼻であって、そのyは長くなく、あるzがxの鼻でなく、尚且つ、長い。といふことはない}。
従って、
(28)により、
(29)
(Ⅰ)∀x{象x⇔
(〃)∀x{象x→ & ~象x→
(〃)すべてxについて{xが象であるならば、& xが象でないならば、
といふ風に、最初に、言明してゐるため、
(Ⅰ)象が鼻が長い。
(〃)∀x{象x⇔∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
(〃)∀x{象x→∃y(鼻yx&長y&)&~象x→~∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
(〃)すべてxについて{xが象であるならば、あるyがxの鼻であって、yが長く、xが象でないならば、あるyはxの鼻であって、そのyは長くなく、あるzがxの鼻でなく、尚且つ、長い。といふことはない}。
といふ「文」は、「最初に、その文の内容の範囲を、象に、限定してゐる」とは、言へない。
然るに、
(30)
「は」の基本的な性質は、主題を表すことです。主題というのは文の最初にあって、その文で述べる内容の範囲を限定するものです。
(白川博之 監修、中上級を教える人のための、日本語文法ハンドブック、2001年、314頁)
従って、
(26)~(30)により、
(31)
主題というのは文の最初にあって、その文で述べる内容の範囲を限定するものです。
といふ「定義」からすれば、
(1)象は鼻が長い。
(〃)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
(〃)すべてxについて{xが象であるならば、あるyはxの鼻であって、そのyは長く、あるzがxの鼻でなく、尚且つ、長い。といふことはない}。
といふ「日本語」に於いて、「象は」は、「主題は」であるが、
(Ⅰ)象が鼻が長い。
(〃)∀x{象x⇔∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
(〃)∀x{象x→∃y(鼻yx&長y&)&~象x→~∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
(〃)すべてxについて{xが象であるならば、あるyがxの鼻であって、yが長く、xが象でないならば、あるyはxの鼻であって、そのyは長くなく、あるzがxの鼻でなく、尚且つ、長い。といふことは
といふ「日本語」に於いて、「象が」は、「主題が」ではない。