(01)
①{象の鼻、兎の鼻、馬の鼻}
といふ「集合(1行3列)」であれば、
①{象の鼻}は長い。
①{兎の鼻}は長くない。
①{馬の鼻}は長くない。
従って、
(01)により、
(02)
①{象の鼻、兎の鼻、馬の鼻}
といふ「集合(1行3列)」であれば、
① 象の鼻は長く、象以外(兎と馬)の鼻は長くない。
然るに、
(03)
①{兎の鼻、兎の耳、兎の顔}
②{象の鼻、象の耳、象の顔}
③{馬の鼻、馬の耳、馬の顔}
といふ「集合の集合(3行3列)」の場合は、
最初に、
②{象は}で、
②{象の鼻、象の耳、象の顔}
といふ「集合」が「選択」されて、 次に、
②{象の鼻}は長い。
②{象の耳}は長くない。
②{象の顔}は長くない。
然るに、
(04)
Q:象の鼻、象の耳、象の顔。どれが長いか。
A:象の鼻が長い。
従って、
(03)(04)により、
(05)
② 象は鼻が長い。
といふ「日本語」は、
② 象ならば、鼻は長く、鼻以外は長くない。
といふ「意味」である。
然るに、
(06)
② 象ならば、鼻は長く、鼻以外は長くない。⇔
② ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}⇔
② すべてのxについて{xが象であるならば、あるyはxの鼻であって、長く、すべてのzについて、zがxの鼻でないならば、zは長くない}。
従って、
(05)(06)により、
(07)
② 象は鼻が長い。⇔
② 象ならば、鼻は長く、鼻以外は長くない。⇔
② ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}⇔
② すべてのxについて{xが象であるならば、あるyはxの鼻であって、長く、すべてのzについて、zがxの鼻でないならば、zは長くない}。
といふ「等式」が、成立する。
然るに、
(08)
1 (1)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)} A
2 (2)∀x{兎x→∃y(長y&耳yx)&∀z(耳zx→~鼻zx)} A
3 (3)∃x(兎x&象x) A
1 (4) 象a→∃y(鼻ya&長y)&∀z(~鼻za→~長z) 1UE
2 (5) 兎a→∃y(長y&耳ya)&∀z(耳za→~鼻za) 2UE
6 (6) 兎a&象a A
6 (7) 象a 6&E
6 (8) 兎a 6&E
1 6 (9) ∃y(鼻ya&長y)&∀z(~鼻za→~長z) 48MPP
2 6 (ア) ∃y(長y&耳ya)&∀z(耳za→~鼻za) 57MPP
1 6 (イ) ∃y(鼻ya&長y) 9&E
ウ (ウ) 鼻ba&長b A
2 6 (エ) ∃y(長y&耳ya) ア&E
オ(オ) 長b&耳ba A
オ(カ) 耳ba オ&E
2 6 (キ) ∀z(耳za→~鼻za) ア&E
2 6 (ク) 耳ba→~鼻ba キUE
2 6 オ(ケ) ~鼻ba カクMPP
1 6 (コ) ∀z(~鼻za→~長z) ア&E
1 6 (サ) ~鼻ba→~長b コUE
12 6 オ(シ) ~長b ケサMPP
オ(ス) 長b オ&E
12 6 オ(セ) 長b&~長b シス&I
12 6 (ソ) 長b&~長b エオセEE
123 (タ) 長b&~長b 36ソEE
12 (チ)~∃x(兎x&象x) 3タRAA
12 (ツ)∀x~(兎x&象x) チ量化子の関係
12 (テ) ~(兎a&象a) ツUE
12 (ト) ~兎a∨~象a テ、ド・モルガンの法則
12 (ナ) 兎a→~象a ト含意の定義
12 (ニ)∀x(兎x→~象x) ナUI
従って、
(08)により、
(09)
(ⅰ)∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。然るに、
(ⅱ)∀x{兎x→∃y(長y&耳yx)&∀z(耳zx→~鼻zx)}。従って、
(ⅲ)∀x(兎x→~象x)。
といふ「推論(三段論法)」、すなはち、
(ⅰ)すべてのxについて{xが象であるならば、あるyはxの鼻であって、長く、すべてのzについて、zがxの鼻でないならば、zは長くない}。 然るに、
(ⅱ)すべてのxについて{xが兎であるならば、あるyは長くて、xの耳であり、すべてのzについて、zがxの耳であるならば、zはxの鼻ではない}。従って、
(ⅲ)すべてのxについて(xが兎であるならば、xは象ではない。)
といふ「推論(三段論法)」は、「妥当」である。
従って、
(09)により、
(10)
(ⅰ)象は鼻が長い。然るに
(ⅱ)兎の耳は長いが、耳は鼻ではない。従って、
(ⅲ)兎は象ではない。
といふ「推論(三段論法)」は、「妥当」である。
従って、
(05)~(10)により、
(11)
② 象は鼻が長い。⇔
② 象ならば、鼻は長く、鼻以外は長くない。⇔
② ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}⇔
② すべてのxについて{xが象であるならば、あるyはxの鼻であって、長く、すべてのzについて、zがxの鼻でないならば、zは長くない}。
といふ「等式」が、「妥当」であるが故に、
(ⅰ)象は鼻が長い。然るに
(ⅱ)兎の耳は長いが、耳は鼻ではない。従って、
(ⅲ)兎は象ではない。
といふ「推論(三段論法)」は、「妥当」である。
従って、
(11)により、
(12)
(ⅰ)象は鼻が長い。然るに
(ⅱ)兎の耳は長いが、耳は鼻ではない。従って、
(ⅲ)兎は象ではない。
といふ「推論(三段論法)」を「否定」出来ない以上、
② 象は鼻が長い。⇔
② 象ならば、鼻は長く、鼻以外は長くない。⇔
② ∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}⇔
② すべてのxについて{xが象であるならば、あるyはxの鼻であって、長く、すべてのzについて、zがxの鼻でないならば、zは長くない}。
といふ「等式」を、「否定」することは、出来ない。
然るに、
(13)
(15)象は、鼻が長い。
この文に主語はひとつもない。日本語にそもそも主語など不要なのだから当然と言えば当然だが、二重主語どころではないのだ。「象は」は主題であり、文がここで切れている。「象について話しますよ」と利き手の注意を引いておき、それに続く話して手のコメントが「鼻が長い」だ。
(金谷武洋、日本語の文法の謎を解く、2003年、79・80頁)。
然るに、
(12)(13)により、
(14)
「象は」=「象ならば」=「∀x{象x→」=「すべてのxについて、xが象であるならば、」
といふことは、確かに、
「象について話しますよ」
といふことであり、それ故、「金谷先生の直観」は、「述語論理(Predicate logic)」としても、「正しい」。
然るに、
(15)
実際、文法学者が「主語」という「語」を使わなければならないことは、不幸なことだ。この語は、普通のことばでは、とりわけ「話題」(主題)という意味でも使われているからである(イェスペルセン著、安藤貞雄 訳、文法の原理(中)、2006年、45頁)。
従って、
(15)により、
(16)
「主語」であることと、「主題」であることは、「矛盾」しない。
然るに、
(17)
主語や目的語や補語、これだけは自分で考えるクセを付けて下さい。学校の先生がこれまた、考えなくとも、どんどん入れて訳してくれるんです。古文はよく、省かれているんですね。誰が、誰を、誰に、みたいなものが、日本語はよく省略されているんですけど、先生がどんどん補って下さる。で、皆さんは何でその主語になるのかよくわかんないまま、またノートに、訳のところに、一生懸命、書いて覚えて、テストを受けてる。さっきも言いました。自力です。「自力で補足するです。」入試のときそばで誰も助けてくれないからですね。で実は、これが皆さんを古文嫌いにさせている、つまり、せっかく、訳ができた。単語を覚えて、Aさんがしてることを、Bさんがしたと勘違いして、変え~んな、文章にしちゃったことないですかあ。ワタシは模擬試験の時にですねえ、よく、ストーリーは、ある程度わかったのに、「やったひととやられた人を勘違い」して、もう途中で「大混乱」してですね。七行目ぐらいまで頑張って読んだのに、もう「まんなか辺」で、プチッと切れて、もうええいいや、ワケわかんなくなっちゃたといって、「放り出す」ことがよくありますけども、これ(主語・目的語・補語)を自分で意識すると、「こうやって考えながらやるんだな」って意識すると、かなり読みやすくなるんです(東進ハイスクール 荻野文子先生 - YouTube)。
といふ「説明」は、「理解可能」である。
然るに、
(18)
「日本語」には、「主語」が無いにも拘らず、「説明(17)」が、「理解可能」である。
といふことは、有りえない。
従って、
(17)(18)による、
(19)
「否定否定式(MTT)」により、「日本語」には、萩野文子先生が所謂、「主語」が有る。
―「令和03年05月24日の記事」を、補足します。―
(01)
①{象の鼻、兎の鼻、馬の鼻}
といふ「集合」であれば、
①{象の鼻}は長い。
①{兎の鼻}は長くない。
①{馬の鼻}は長くない。
従って、
(01)により、
(02)
①{象の鼻、兎の鼻、馬の鼻}
といふ「集合」であれば、
① 象の鼻は長く、象以外(兎と馬)の鼻は長くない。
然るに、
(03)
①{兎の耳、象の耳、馬の耳}
②{象の鼻、兎の鼻、馬の鼻}
③{馬の顔、象の顔、兎の顔}
といふ「集合の集合」の場合は、
最初に、
②{鼻は}で、
②{象の鼻、兎の鼻、馬の鼻}
といふ「集合」が「選択」されて、 次に、
②{象の鼻}は長い。
②{兎の鼻}は長くない。
②{馬の鼻}は長くない。
従って、
(03)により、
(04)
①{兎の耳、象の耳、馬の耳}
②{象の鼻、兎の鼻、馬の鼻}
③{馬の顔、象の顔、兎の顔}
といふ「集合の集合」であれば、
② 鼻は、象の鼻は長く、象以外(兎と馬)の鼻は長くない。
然るに、
(05)
② 象以外の鼻は長くない。
といふことは、
② 象以外の動物のある部分が長いとすれば、鼻以外が長い。
といふ、ことである。
従って、
(04)(05)により、
(06)
①{兎の耳、象の耳、馬の耳}
②{象の鼻、兎の鼻、馬の鼻}
③{馬の顔、象の顔、兎の顔}
といふ「集合の集合」であれば、
② 鼻は、象の鼻は長く、象以外の動物のある部分が長いとすれば、鼻以外が長い。
然るに、
(07)
Q:象の鼻、兎の鼻、馬の鼻。どれが長いか。
A:象の鼻が長い。
従って、
(02)(06)(07)により、
(08)
① 象の鼻が長い≡象の鼻は長く、象以外の鼻は長くない。
② 鼻は象が長い≡鼻ならば、象の鼻は長く、象以外で長いとすれば、鼻ではない。
といふ「等式」が、成立する。
然るに、
(09)
① 象の鼻は長く、象以外の鼻は長くない。
② 鼻ならば、象の鼻は長く、象以外で長いとすれば、鼻ではない。
といふ「日本語」は、
① ∀x∃y{(象x&鼻yx→長y)&(~象x&鼻yx→~長y)}
② ∀x∃y{(鼻xy&象y→長x)&(~象y&長x→~鼻xy)}
といふ「述語論理式」に、相当する。
従って、
(08)(09)により、
(10)
① 象の鼻が長い≡∀x∃y{(象x&鼻yx→長y)&(~象x&鼻yx→~長y)}。
② 鼻は象が長い≡∀x∃y{(鼻xy&象y→長x)&(~象y&長x→~鼻xy)}。
といふ「等式」が、成立する。
従って、
(08)(09)(10)により、
(11)
① 象の鼻が長い。
② 鼻は象が長い。
といふ「日本語」を「分析」した「結果」が、
① 象の鼻は長く、象以外の鼻は長くない。
② 鼻ならば、象の鼻は長く、象以外で長いとすれば、鼻ではない。
といふ「日本語」であって、
① 象の鼻は長く、象以外の鼻は長くない。
② 鼻ならば、象の鼻は長く、象以外で長いとすれば、鼻ではない。
といふ「日本語」を、「述語論理式」に「翻訳」した「結果」、
① ∀x∃y{(象x&鼻yx→長y)&(~象x&鼻yx→~長y)}
② ∀x∃y{(鼻xy&象y→長x)&(~象y&長x→~鼻xy)}
といふ、「述語論理式」になる。
従って、
(11)により、
(12)
① 象の鼻が長い≡∀x∃y{(象x&鼻yx→長y)&(~象x&鼻yx→~長y)}。
② 鼻は象が長い≡∀x∃y{(鼻xy&象y→長x)&(~象y&長x→~鼻xy)}。
といふ「等式」が「書ける」やうになるためには、「その前に」、
① 象の鼻が長い≡象の鼻は長く、象以外の鼻は長くない。
② 鼻は象が長い≡鼻ならば、象の鼻は長く、象以外で長いとすれば、鼻ではない。
といふ「等式」が「書けなければ、ならない。」
然るに、
(13)
① 象の鼻が長い。
② 鼻は象が長い。
といふ「日本語」を、例へば、「英語」に「翻訳」する際に、
① 象の鼻が長い≡象の鼻は長く、象以外の鼻は長くない。
② 鼻は象が長い≡鼻ならば、象の鼻は長く、象以外で長いとすれば、鼻ではない。
といふ「分析」を行ふ「人間」は、「殆ど、ゐない」はずであって、それ故、
「和文・述語論理」と、「和文・英訳」とは、本質的に、「同じ」ではない。
然るに、
(14)
① 象の鼻が長い≡象の鼻は長く、象以外の鼻は長くない。
② 鼻は象が長い≡鼻ならば、象の鼻は長く、象以外で長いとすれば、鼻ではない。
といふ「分析」を行ふためには、
一般にあたまが柔軟であることが必要である(Flexibility of mind is generally required)。
(E.J.レモン 著、武生治一郎・浅野楢英 訳、論理学初歩、1973年、130頁改)
然るに、
(15)
① 象の鼻が長い≡∀x∃y{(象x&鼻yx→長y)&(~象x&鼻yx→~長y)}。
② 鼻は象が長い≡∀x∃y{(鼻xy&象y→長x)&(~象y&長x→~鼻xy)}。
といふ「翻訳」を行ふためには、
なんら確定的な規則があるわけでなく、量記号に十分に馴れるまでには、練習を積むことが必要である(No firm rules can be given, and practice is needed before full familiarity with quantifiers is reached)。
(E.J.レモン 著、武生治一郎・浅野楢英 訳、論理学初歩、1973年、130頁改)