―「昨日の記事(234)」を「別の角度」から、説明します。―
(01)
(ⅰ)P→Q├ ~P∨Q
1 (1) P→ Q A
2(2) P&~Q A
2(3) P 2&E
2(4) ~Q 2&E
12(5) Q 13MPP
12(6) ~Q&Q 45&I
1 (7) ~~Q 46RAA
1 (8) Q 7DN
1 (9) ~P∨Q 8∨I
(ⅱ)~P∨Q├ P→Q
1 (1) ~P∨ Q A
2 (2) P&~Q A
3 (3) ~P A
2 (4) P 2&E
23 (5) ~P& P 34&I
3 (6)~(P&~Q) 25RAA
7 (7) Q A
2 (8) ~Q 2&E
2 7 (9) Q&~Q 78&I
7 (ア)~(P&~Q) 29RAA
1 (イ)~(P&~Q) 1367ア∨E
ウ (ウ) P A
エ(エ) ~Q A
ウエ(オ) P&~Q エオ&I
1 ウエ(カ)~(P&~Q)&
(P&~Q) イオ&I
1 ウ (キ) ~~Q エカRAA
1 ウ (ク) Q キDN
1 (ケ) P→ Q ウクCP
従って、
(01)により、
(02)
① P→Q=PならばQである。
② ~P∨Q=Pでないか、Qである。
に於いて、
①=② である。
ものの、この「等式」を、「含意の定義(Ⅰ)」とにする。
然るに、
(03)
(ⅱ)~P∨Q├ ~(P&~Q)
1 (1) ~P∨ Q A
2 (2) P&~Q A
3 (3) ~P A
2 (4) P 2&E
23 (5) ~P& P 34&I
3 (6)~(P&~Q) 25RAA
7(7) Q A
2 (8) ~Q 2&E
27(9) Q&~Q 78&I
7(ア)~(P&~Q) 29RAA
1 (イ)~(P&~Q) 1367ア∨E
(ⅲ)~(P&~Q)├ ~P∨Q
1 (1) ~( P&~Q) A
2 (2) ~(~P∨ Q) A
3 (3) ~P A
3 (4) ~P∨ Q 3∨I
23 (5) ~(~P∨ Q)&
(~P∨ Q) 24&I
2 (6) ~~P 35RAA
2 (7) P 6DN
8(8) Q A
8(9) ~P∨ Q 8∨I
2 8(ア) ~(~P∨ Q)&
(~P∨ Q) 29&I
2 (イ) ~Q 8アRAA
2 (ウ) P&~Q 7イ&I
12 (エ) ~( P&~Q)&
( P&~Q) 1ウ&I
1 (オ)~~(~P∨ Q) 2エRAA
1 (カ) ~P∨ Q オDN
cf.
ド・モルガンの法則。
従って、
(03)により、
(04)
② ~P∨ Q =Pでないか、Qである。
③ ~(P&~Q)=Pであって、Qでない。といふことはない。
に於いて、
②=③ である。
従って、
(02)(04)により、
(05)
① P→ Q =PならばQである。
② ~P∨ Q =Pでないか、Qである。
③ ~(P&~Q)=Pであって、Qでない。といふことはない。
に於いて、
①=② であって、
②=③ である。
従って、
(05)により、
(06)
① P→ Q =PならばQである。
③ ~(P&~Q)=Pであって、Qでない。といふことはない。
に於いて、
①=③ である。
ものの、この「等式」を、「含意の定義(Ⅱ)」とにする。
然るに、
(07)
(ⅰ)
1 (1) ∃x(Fx→Gx) A
2(2) Fa→Ga A
2(3) ~Fa∨Ga 2含意の定義(Ⅰ)
2(4)∃x(~Fa∨Ga) 3EI
1 (5)∃x(~Fx∨Gx) 124EE
(ⅱ)
1 (1)∃x(~Fx∨Gx) A
2(2) ~Fa∨Ga A
2(3) Fa→Ga 2含意の定義(Ⅰ)
2(4) ∃x(Fx→Gx) 2EI
1 (5) ∃x(Fx→Gx) 124EE
従って、
(07)により、
(08)
① ∃x( Fx→Gx)
② ∃x(~Fx∨Gx)
に於いて、
①=② である。
然るに、
(09)
(ⅱ)
1 (1) ∃x(Fx→ Gx) A
2(2) Fa→ Ga A
2(3) ~(Fa&~Ga) 2含意の定義(Ⅱ)
2(4)∃x~(Fx&~Gx) 3EI
1 (5)∃x~(Fx&~Gx) 124EE
(ⅲ)
1 (1)∃x~(Fx&~Gx) A
2(2) ~(Fa&~Ga) A
2(3) Fa→Ga 2含意の定義(Ⅱ)
2(4) ∃x(Fx→Gx) 2EI
1 (5) ∃x(Fx→Gx) 124EE
従って、
(09)により、
(10)
① ∃x (Fx→ Gx)
③ ∃x~(Fx&~Gx)
に於いて、
①=③ である。
従って、
(08)(10)により、
(11)
① ∃x( Fx→Gx)
② ∃x(~Fx∨Gx)
③ ∃x~(Fx&~Gx)
に於いて、
①=②=③ である。
然るに、
(12)
{xの変域(ドメイン)}が、{a、b、c}であるならば、そのときに限って、
② ∃x(~Fx∨Gx)=(~Fa∨Ga)∨(~Fb∨Gb)∨(~Fc∨Gc)={~Fa∨Ga∨~Fb∨Gb∨~Fc∨Gc}
である。
cf.
「結合法則」。
然るに、
(13)
「量化子の関係」により、
③ ∃x~(Fx&~Gx)
④ ~∀x(Fx&~Gx)
に於いて、
③=④ である。
然るに、
(14)
{xの変域(ドメイン)}が、{a、b、c}であるならば、そのときに限って、
③ ∃x~(Fx&~Gx)=
④ ~∀x(Fx&~Gx)=
④ ~{(Fa&~Ga)&(Fb&~Gb)&(Fc&~Gc)}=
④ ~(Fa&~Ga)∨~(Fb&~Gb)∨~(Fc&~Gc)=
④ (~Fa∨~~Ga)∨(~Fb∨~~Gb)∨(~Fc∨~~Gc)=
④ (~Fa∨Ga)∨(~Fb∨Gb)∨(~Fc∨Gc)={~Fa∨Ga∨~Fb∨Gb∨~Fc∨Gc}
cf.
「ド・モルガンの法則、二重否定、結合法則」。
従って、
(11)~(14)により、
(15)
{xの変域(ドメイン)}が、{a、b、c}であるならば、そのときに限って、
① ∃x( Fx→Gx)={~Fa∨Ga∨~Fb∨Gb∨~Fc∨Gc}
② ∃x(~Fx∨Gx)={~Fa∨Ga∨~Fb∨Gb∨~Fc∨Gc}
③ ~∀x(Fx&~Gx)={~Fa∨Ga∨~Fb∨Gb∨~Fc∨Gc}
に於いて、
①=②=③ である。
従って、
(16)
① ∃x( Fx→Gx)={~Fa∨Ga∨~Fb∨Gb∨~Fc∨Gc}
② ∃x(~Fx∨Gx)={~Fa∨Ga∨~Fb∨Gb∨~Fc∨Gc}
③ ~∀x(Fx&~Gx)={~Fa∨Ga∨~Fb∨Gb∨~Fc∨Gc}
の「右辺」に於いて、
~Fx=xはフランス人ではない。
といふ「代入」を行ふと、
① ∃x( Fx→Gx)={aはフランス人ではない。∨Ga∨bはフランス人ではない。∨Gb∨cはフランス人ではない。∨Gc}
② ∃x(~Fx∨Gx)={aはフランス人ではない。∨Ga∨bはフランス人ではない。∨Gb∨cはフランス人ではない。∨Gc}
③ ~∀x(Fx&~Gx)={aはフランス人ではない。∨Ga∨bはフランス人ではない。∨Gb∨cはフランス人ではない。∨Gc}
然るに、
(17)
① aがイギリス人である。ならば、aはフランス人ではない。
① bがアメリカ人である。ならば、bはフランス人ではない。
① cがイタリア人である。ならば、cはフランス人ではない。
従って、
(16)(17)により、
(18)
① ∃x( Fx→Gx)={aはイギリス人である。∨Ga∨ bはアメリカ人である。∨Gb∨ cイタリア人である。∨Gc}
② ∃x(~Fx∨Gx)={aはイギリス人である。∨Ga∨ bはアメリカ人である。∨Gb∨ cイタリア人である。∨Gc}
③ ~∀x(Fx&~Gx)={aはイギリス人である。∨Ga∨ bはアメリカ人である。∨Gb∨ cイタリア人である。∨Gc}
であったとしても、「真理値(本当かウソ)」は、「同じ」である。
然るに、
(19)
「交換法則」と「結合法則」により、
① ∃x( Fx→Gx)=(aはイギリス人である。∨ bはアメリカ人である。∨ cイタリア人である。)∨(Ga∨Gb∨Gc)
② ∃x(~Fx∨Gx)=(aはイギリス人である。∨ bはアメリカ人である。∨ cイタリア人である。)∨(Ga∨Gb∨Gc)
③ ~∀x(Fx&~Gx)=(aはイギリス人である。∨ bはアメリカ人である。∨ cイタリア人である。)∨(Ga∨Gb∨Gc)
然るに、
(20)
「∨」は、日本語で言へば、「か」である。
従って、
(19)(20)により、
(21)
① ∃x( Fx→Gx)=(aはイギリス人である。∨ bはアメリカ人である。∨ cイタリア人である。)∨(Ga∨Gb∨Gc)
② ∃x(~Fx∨Gx)=(aはイギリス人である。∨ bはアメリカ人である。∨ cイタリア人である。)∨(Ga∨Gb∨Gc)
③ ~∀x(Fx&~Gx)=(aはイギリス人である。∨ bはアメリカ人である。∨ cイタリア人である。)∨(Ga∨Gb∨Gc)
といふ「命題」は、
① ∃x( Fx→Gx)=(aはイギリス人である。か、bはアメリカ人である。か、cイタリア人である。)か、(Gaか、Gbか、Gc)
② ∃x(~Fx∨Gx)=(aはイギリス人である。か、bはアメリカ人である。か、cイタリア人である。)か、(Gaか、Gbか、Gc)
③ ~∀x(Fx&~Gx)=(aはイギリス人である。か、bはアメリカ人である。か、cイタリア人である。)か、(Gaか、Gbか、Gc)
といふ「意味」である。
従って、
(21)により、
(22)
① ∃x( Fx→Gx)=(aはイギリス人である。か、bはアメリカ人である。か、cイタリア人である。)か、(Gaか、Gbか、Gc)
② ∃x(~Fx∨Gx)=(aはイギリス人である。か、bはアメリカ人である。か、cイタリア人である。)か、(Gaか、Gbか、Gc)
③ ~∀x(Fx&~Gx)=(aはイギリス人である。か、bはアメリカ人である。か、cイタリア人である。)か、(Gaか、Gbか、Gc)
といふ「命題」は、
① aがイギリス人である。ならば、「真(本当)」であり、
① aがイギリス人で、bがアメリカ人である。ならば、「真(本当)」であり、
① aがイギリス人で、bがアメリカ人で、cがイタリア人である。ならば、「真(本当)」である。
従って、
(22)により、
(23)
① ∃x(Fx→Gx)=
① あるxが、フランス人であるならば、そのxはGである=
①(aはイギリス人である。か、bはアメリカ人である。か、cイタリア人である。)か、(Gaか、Gbか、Gc)。
といふ「仮言命題」は、
① フランス人が、一人もゐない。
としても、「本当(真)」である。
然るに、
(24)
④ ∃x(Fx&Gx)=あるxはフランス人であって、尚且つ、xは寛大である。
といふ「連言命題」は、
④ フランス人であって、寛大なxが、少なくとも、一人はゐる。
といふ「意味」である。
従って、
(25)
④「フランス人が一人もゐない。」のであれば、
④ ∃x(Fx&Gx)=あるxはフランス人であって、尚且つ、xは寛大である。
といふ「論理式」は、「偽(ウソ)」である。
従って、
(26)
① ∃x(Fx→Gx)=あるxがフランス人であるならば、xは寛大である。
④ ∃x(Fx&Gx)=あるxはフランス人であって、尚且つ、xは寛大である。
に於いて。
① であれば、「フランス人が一人もゐない。」としても、「真(本当)」である。
④ であれば、「フランス人が一人もゐない。」としたら、「偽(ウソ)」である。
然るに、
(27)
④ 幾人かのフランス人は寛大である(Some French are generous)。
といふのであれば、「フランス人が一人もゐない。」としたら、「偽(ウソ)」である。
従って、
(26)(27)により、
(28)
④ Some French are generous(幾人かのフランス人は寛大である)。
といふ「英語(日本語)」を、
① ∃x(フランス人x→寛大x)=あるxがフランス人であるならば、そのxは寛大である。
といふ風に、「翻訳」することは、出来ない・
従って、
(01)~(28)により、
(29)
「すべてのフランス人は寛大である」は一種の条件文として適切に記号化されるので、これに同化(assimilate)してしまって、「幾らかのフランス人は寛大である」を、正しく「∃x(Fx&Gx)」と記号化するかわりに、むしろ「∃x(Fx→Gx)」とするのは、よくある間違い(common mistake)である。しかし、「∃x(Fx→Gx)」は、それがフランス人であるならば、寛大であるようなあるものが存在することを主張するのであって、これは、かりにフランス人が存在しないとしても真であろう。しかし「幾らかのフランス人は寛大である」は決してそうではない(E.J.レモン 著、竹尾治一郎・浅野楢英 訳、論理学初歩、1973年、123・4頁改)。
といふ、ことになる。