WO2017172601
In Figure 17 the principle utilized is the same, the main difference is that this embodiment focuses on the user interface. The entire system can be adapted and miniaturized on a device similar to a tablet here represented. The dashed line 1806 represents a touch screen on the device on the opposite side with respect to the current view. The back side of the device here appearing on the top of the figure includes the light sources 1802 and 1808 on movable arms that can rotate in circle around a certain spot. This spot doesn't necessarily have to be in the center of the device, but it can be located as it is more convenient. The light sources can also slide along the movable arms 1801 so that they can be placed anywhere on a circular area 1805 and thus cover several diffraction angles. The rotating arm can move around a circular support 1803. In case the radiation source is a laser 1802, one of the possible paths of the beam is traced by a dashed line: it is reflected and diffracted by the photonic material and redirected toward window 1804 of the device which can be the sensitive element of the detector itself, or a window that lets the beam through to the detector or to one or more mirrors as shown in the previous embodiments. If the diffused light source is utilized, the image of the diffraction pattern will be analyzed by a camera sensor 1804. It is to be noted that element 1804 can be either the camera sensor, or photodetector, or both, or a window that lets the radiation through, so that it can reach the opportune sensitive element either directly or with a set of mirrors, or other optical elements.
図17において利用される原理は同じであるが、主な違いは、この実施形態がユーザインタフェースに焦点を置いていることである。システム全体は、この図に表現されているタブレットに似たデバイスに合うように変えて、小型化することができる。破線1806は、現在の図に対して反対側の、デバイス上のタッチスクリーンを表す。この図の上部に示される装置の裏側には、可動アーム上の光源1802及び1808が備えられており、これらの光源は、ある点を中心にして円状に回転できる。この点は必ずしも装置の中心にある必要はないが、より便利であるように配置してもよい。光源は、円形領域1805のどこへでも配置することができ、したがっていくつかの回折角を範囲に含み得るように、光源を可動アーム1801に沿って摺動することもできる。回転アームは、円形支持体1803の周りを動くことができる。放射源がレーザ1802である場合、ビームのあり得る経路の1つが破線によって引かれる。ビームは、フォトニック材料によって反射されて回折され、装置の窓1804の方へ向け直される。窓1804は、検出器自体の高感度素子であってもよく、または検出器もしくは先の実施形態に示すような1つ以上のミラーにビームを通す窓であってもよい。拡散光源が利用される場合、回折パターンの画像は、カメラセンサ1804によって分析される。素子1804は、カメラセンサかそれとも光検出器、またはその両方、または放射が、直接か、ミラーのセットもしくは他の光学素子を用いるかのいずれかで、適切な高感度素子へ到達できるように放射を通過させる窓であってもよいことに注意すべきである。
WO2013142053
15. The method of claim 14, wherein deploying the insulating element further includes orienting an electrically permeable window on the insulating element toward the vagus nerve, and wherein positioning the medical lead includes positioning the at least one electrode such that the electrical stimuli can be directed toward the vagus nerve through the window.
【請求項15】
前記絶縁要素を留置する前記工程は、前記絶縁要素上の電気を通す窓を前記迷走神経に向ける工程をさらに備え、前記医療用リードを位置決めする前記工程が、前記窓を通して前記迷走神経に向けて前記電気刺激因子を向けられるように、前記少なくとも1つの電極を位置決めする工程を含む、請求項14に記載の方法。
WO20130130861
[0021] The heat sink(s) 120 dissipate warm or hot air generated within the housing 102 that then exits the housing 102 through the heat exits 106 or openings positioned on the opposing side surfaces 1 12, 114 of the housing 102, as shown in FIGS. 1 and 2. In some examples, the heat sink(s) 120 are spaced apart from or positioned adjacent to or otherwise considered a discrete element from the heat exits 106. In other examples, the heat sinks 120 are integrally formed with the heat exits 106. FIGS. 1 and 2 show a portion of a heat sink that is positioned at least partially within the openings of the heat exits 106. In other examples, the heat sink may be contained within the housing 102. Warm or hot heated air is expelled through the heat exits 106. Without the deflectors 122 shown in FIGS. 1 and 2, this air may be expelled in various directions from the housing 102, including toward the front surface 108 and the window 118 of the housing 102 and thus toward the medium where the curing occurs. When air is allowed to be expelled in the direction of the medium where the curing occurs, it may often disrupt the curing process. The deflectors 122 shown in FIGS. 1 and 2 guide the heated air away from the housing 102 in a direction away from the medium upon which the curing occurs. In these examples, the deflectors 122 guide the airflow and waste heat away from the housing 102 in a deflecting direction away from the window 1 18 through which the light is emitted in an emitted light direction 1 11 because the medium is positioned adjacent or otherwise near the window 1 18. In this way, even if the heat exits are placed near the Attorney Docket No. PH012331PCT window 1 18 of front surface 108, as shown in FIGS. 1-2, disturbances to the curing workpiece surface by the heated air can be substantially reduced.
熱シンク120は、図1と図2に示すように、ハウジング102の両側面112,114に開口する熱出口106または開口を通してハウジング102に存在するハウジング102内で発生した温かい空気または熱い空気を放散する。一例として、熱シンク120は、熱出口106から独立した別個の要素として熱出口から間隔をあけて離してもよく、あるいは熱出口に隣接して配置してもよく、あるいはその他の別の異なる配置としてもよい。他の一例として、熱シンク120は、熱出口106と一体に形成するようにしてもよい。図1と図2に熱出口106の開口のなかに少なくとも部分的に配置された熱シンクの一部を示す。他の一例として、熱シンクをハウジング102内に収容してもよい。熱出口106を通してハウジングから温かい空気または熱い加熱空気を排出する。図1と図2に示すデフレクタ122が無ければ、この空気は、ハウジング102の前面108と窓118へ向かう方向および硬化を引き起こす媒体へ向かう方向などを含む様々な方向にハウジング102から出ていくことができる。硬化を引き起こす媒体に向けて空気を排出するときに、硬化プロセスがしばしば中断されることがある。図1と図2に示すデフレクタ122は、硬化を引き起こす媒体から離れる方向に加熱空気をハウジング102から出ていくように案内する。これらの例においてデフレクタ122は、媒体が窓118に隣接して配置されるか又はその近傍に配置されているので、空気流および廃熱を出射光方向111に発光される光を通す窓118から離れる偏向方向133に向けてハウジング102から出ていくように案内する。この点において、図1~図2に示すように熱出口を前面108の窓118の近傍に配置したとしても、ハウジング内の加熱空気を実質的に低減できることにより被加工物表面の硬化が阻害される。
WO2006089227
In an alternate embodiment of the invention, devices such as devices 100 and 200 described above can be used to provide a lower power density by increasing the size of the window through which EMR is transmitted. In other words, rather than decreasing the power density by decreasing the relative amount of power that is produced by the device, the power density can be lowered by enlarging the area of the window that transmits energy to the tissue being treated. In addition to producing a desirable power density, increasing the area has the additional advantage of allowing the handpiece 400 to be used with the same base unit as other handpieces, such as the embodiments described in conjunction with FIGS. 1-15.
本発明の代替実施形態では、EMRを通す窓のサイズを大きくすることにより、前述した装置100および200のような装置をより低い出力密度を与えるのに利用することができる。換言すれば、装置によって生成される出力の相対的な量を下げることにより出力密度を下げるよりも、治療された組織へとエネルギーを通す窓の面積を大きくすることにより出力密度を下げることができる。求める出力密度が生成されることに加え、面積を大きくすることには、他のハンドピースと同じベースユニット、たとえば、図1から図15に関連して説明した実施形態と同じベースユニットと一緒にハンドピース400を使用できるという付随的な利点もある。
US20100299800
(Ab)
A hand warmer is provided with a viewing window that allows a media device, such as a cell phone, personal digital assistant, music player, or gaming device to be viewed and manipulated by a user while the user holds the media device with one or both hands within the hand warmer. The user is thus able to keep his or her hands and the media device warm and dry and otherwise protected from the elements while operating the media device.
US6390019
The present invention provides a process chamber for processing a substrate and monitoring the process being conducted on the substrate with a high degree of accuracy and repeatability. The chamber comprises a support, a process gas distributor, and an exhaust system. The chamber has a wall comprising a window that allows light to be transmitted therethrough. The window comprises a transparent plate covered by a mask having at least one aperture extending through the mask so that light can be transmitted through the aperture of the mask and the transparent plate to monitor the process being conducted on the substrate. The mask covering the transparent plate reduces deposition of process gas byproducts and other deposits on the window during a process in which a substrate is held on the support and processed by process gas that is distributed by the gas distributor and is exhausted by the exhaust system.
US9658173
(Ab)
A portable x-ray backscattering imaging system for creating a backscatter image representing an object is disclosed. The portable x-ray backscattering imaging system may include a drum, a radioactive source, a plurality of backscatter detectors, and a portable exterior shield. The drum may be rotatable about an axis of rotation at a rotational speed. The radioactive source may be connected to the drum and configured to generate x-rays. The plurality of backscatter detectors may be configured to detect backscattering radiation created as the x-rays generated by the radioactive source scatter back from the object. The portable exterior shield may enclose the drum. The exterior shield may be constructed of a material that substantially blocks the x-rays and defines a window that allows for the x-rays to pass through.
US20160258888
(Ab)
Herein disclosed is an x-ray florescence (XRF) test system which comprises an XRF test instrument used for testing a test target's responses to X-rays, the instrument including a test window allowing the X-ray and its responsive energy to pass through, and a window protecting film assembly allowing X-rays to pass through and providing protection to the window, the film assembly being configured to be coupled with the window in a fashion to be removed from or applied or reapplied over the window. The corresponding calibration mode can be manually or automatically applied according to the specific film assembly presently in use. An embodiment of the film assembly comprises a thin film fixed with an adhesive layer to a supporting frame having a closely spaced array of apertures.
US5552888
12. The apparatus of claim 11, wherein the first-axis sheath portion comprises a housing enclosing a portion of the first beam path, the housing having a wall and a beam opening through the wall, wherein the first-axis sheath portion comprises an elongate hollow member extending through the beam opening and supported for movement relative to the wall in a direction generally parallel to the first beam path, and wherein the first-axis sheath portion further comprises a window covering an end of the elongate hollow member nearest the first reflector, the window allowing passage of the first-axis measurement beam between the controlled environment and the first reflector.