(01)
①{象、机、車}であれば、
①{象が動物であり}、
②{象、兎、馬}であれば、
②{象も動物である}。
従って、
(01)により、
(02)
① 象が動物である=象は動物であり、象以外(机、車)は動物でない。
② 象も動物である=象は動物であり、象以外(兎、馬)も動物である。
に於いて、①と②は、
① 象以外は動物でない。
② 象以外も動物である。
の「部分」が、「矛盾」する。
然るに、
(03)
① 象が動物である=象は動物であり、象以外は動物でない。
といふ「命題」は、
① ∀x(象x→動物x&~象x→~動物x)
① すべてのxについて(xが象であるならば、xは動物であり、xが動物でなければ、xは動物ではない)。
といふ風に、書くことが出来る。
従って、
(02)(03)により、
(04)
① 象が動物である=象は動物であり、象以外は動物でない。
② 象も動物である=象は動物であり、象以外も動物である。
に於いて①と②は、
① ~象x→~動物x
② ~(~象x→~動物x)
の「部分論理式」が、「矛盾」する。
従って、
(03)(04)により、
(05)
① 象が動物である=象は動物であり、象以外は動物でない。
② 象も動物である=象は動物であり、象以外も動物である。
といふ「日本語」は、それぞれ、
① ∀x{象x→動物x& ~象x→~動物x}
② ∀x{象x→動物x&~(~象x→~動物x)}
といふ「述語論理」に、相当する。
然るに、
(06)
109 ∀x(Fx&Gx)┤├ ∀xFx&∀xGx
(a) 1(1)∀x(Fx&Gx) A
1(2) Fa&Ga 1UE
1(3) Fa 2&E
1(4) ∀xFx 3UI
1(5) Ga 2&E
1(6) ∀xGx 5UI
1(7)∀xFx&∀xGx 46&I
(b)
1(1)∀xFx&∀xGx A
1(2)∀xFx 1&E
1(3) Fa 2UE
1(4) ∀xGx 1&E
1(5) Ga 4UE
1(6) Fa&Ga 35&I
1(7)∀x(Fx&Gx) 6UI
109の、相互導出可能性の結果は、普遍量記号が連言の仲間であることからすれば、全く予想されることである。
(E.J.レモン 著、武生治一郎・浅野楢英 訳、論理学初歩、1973年、151・153頁改)。
従って、
(05)(06)により、
(07)
① ∀x{象x→動物x& ~象x→~動物x}
② ∀x{象x→動物x&~(~象x→~動物x)}
といふ「式」は、
① ∀x(象x→動物x)& ∀x(~象x→~動物x)
② ∀x(象x→動物x)&∀x~(~象x→~動物x)
といふ「式」に「等しい」。
然るに、
(08)
(ⅱ)
1(1)∀x~(~象x→~動物x) A
1(2) ~(~象a→~動物a) 1UE
1(3) ~(象a∨~動物a) 2含意の定義
1(4) ~象a& 動物a 3ド・モルガンの法則
1(5) ∀x(~象x& 動物x) 4UI
(ⅲ)
1(1) ∀x(~象x& 動物x) A
1(2) ~象a& 動物a 1UE
1(3) ~(象a∨~動物a) 2ド・モルガンの法則
1(4) ~(象a→~動物a) 3含意の定義
1(5) ∀x~(象a→~動物a) 4UI
従って、
(08)により、
(09)
② ∀x~(~象x→~動物x)
③ ∀x(~象x& 動物x)
に於いて、
②=③ である。
従って、
(06)~(09)により、
(10)
② ∀x{象x→動物x & ~(~象x→~動物x)}
③ ∀x(象x→動物x)&∀x(~象x& 動物x)
に於いて、
②=③ である。
然るに、
(11)
③ ∀x(象x→動物x)&∀x(~象x& 動物x)
に於いて、
③ ∀x(~象x&動物x)
といふ「論理式」は、
③ すべてのxは、象以外の動物である。
といふ「意味」である。
従って、
(10)(11)により、
(12)
② ∀x{象x→動物x & ~(~象x→~動物x)}
③ ∀x(象x→動物x)&∀x(~象x& 動物x)
といふ「論理式(命題)」は、
③ すべてのxについて、xが象であるならば、xは動物であり、すべてのxは象以外の動物である。
といふ「意味」である。
然るに、
(13)
③ すべてのxについて、xが象であるならば、xは動物であり、すべてのxは象以外の動物である。
といふことは、
②{象、兎、馬}ではなく、例へば、
③{犬、兎、馬}でなければ、ならない。
然るに、
(14)
③ すべてのxについて、xが象であるならば、xは動物であり、すべてのxは象以外の動物である。
ではなく、
③ すべてのxについて、xが象であるならば、xは動物であり、あるyは象以外の動物である。
であるならば、
③{象、兎、馬}であるため、「問題」は無い。
然るに、
(15)
③ すべてのxについて、xが象であるならば、xは動物であり、あるyは象以外の動物である。
であるならば、
③ ∀x{象x→動物x&∃y(~象y&動物y)}
である。
従って、
(01)~(15)により、
(16)
③{象、兎、馬}であれば、
③{象も動物である}であるため、
③「象も動物である。」といふ「日本語」は、
② ∀x{象x→動物x&~(~象x→~動物x)}
といふ「論理式」ではなく、
③ ∀x{象x→動物x&∃y(~象y&動物y)}
といふ「論理式」に、相当する。
然るに、
(17)
(ⅱ)
1 (1) ∀x{象x→動物x&~(~象x→~動物x)} A
1 (2) 象a→動物a&~(~象a→~動物a) 1UE
1 (3) 象a→動物a 2&E
1 (4) ~(~象a→~動物a) 2&E
5 (5) ~(~象a& 動物a) A
6 (6) ~象a A
7(7) 動物a A
67(8) ~象a& 動物a 67&I
567(9) ~(~象a& 動物a)&
(~象a& 動物a) 58&I
56 (ア) ~動物a 79RAA
5 (イ) ~象a→~動物a 6アCP
15 (ウ) ~(~象a→~動物a)
(~象a→~動物a) 4イ&I
1 (エ) ~~(~象a& 動物a) 5ウRAA
1 (オ) ~象a& 動物a エDN
1 (カ) ∃y(~象y& 動物y) オEI
1 (キ) 象a→動物a&∃y(~象y& 動物y) 3カ&I
1 (ク)∀x{象x→動物x&∃y(~象y& 動物y)} キUI
(ⅲ)
1 (1)∀x{象x→動物x&∃y(~象y& 動物y)} A
1 (2) 象a→動物a&∃y(~象y& 動物y) 1UR
1 (3) 象a→動物a 2&E
1 (4) ∃y(~象y& 動物y) 2&E
5 (5) ~象a& 動物a A
6 (6) ~象a→~動物a A
5 (7) ~象a 5&E
6 (8) 動物a 5&E
56 (9) ~動物a 67MPP
56 (ア) 動物a&~動物a 89&I
5 (イ) ~(~象a→~動物a) 6アRAA
1 (ウ) ~(~象a→~動物a) 45イEE
1 (エ) 象a→動物a&~(~象a→~動物a) 3ウ&I
1 (オ) ∀x{象x→動物x&~(~象x→~動物x)} エUI
従って、
(17)により、
(18)
② ∀x{象x→動物x& ~(~象x→~動物x)}
③ ∀x{象x→動物x&∃y(~象y& 動物y)}
に於いて、
②=③ である(?)。
従って、
(16)(17)(18)により、
(19)
③「象も動物である。」といふ「日本語」は、
② ∀x{象x→動物x&~(~象x→~動物x)}といふ「論理式」ではなく、
③ ∀x{象x→動物x&∃y(~象y&動物y)}といふ「論理式」に、相当する。
と言ってゐるにも拘らず、実際には、
②=③ である。
といふことになってしまい、「お前の言ってゐることは、矛盾である」。
といふ、ことになる。
然るに、
(20)
1 (1)∃xFx A
2(2) Fa A
1 (3) Fa 122EE
1 (4)∀xFx 3UI
UIの適用は正しい。なぜならば、1は「a」を含まないからである。しかし、EEの適用は正しくない。
(E.J.レモン 著、武生治一郎・浅野楢英 訳、論理学初歩、1973年、147頁)
従って、
(17)(20)により、
(21)
(ⅲ)
1 (ウ) ~(~象a→~動物a) 45イEE
1 (エ) 象a→動物a&~(~象a→~動物a) 3ウ&I
1 (オ) ∀x{象x→動物x&~(~象x→~動物x)} エUI
といふ「3行」も、「マチガイ」である。
従って、
(17)(18)(21)により、
(22)
② ∀x{象x→動物x& ~(~象x→~動物x)}
③ ∀x{象x→動物x&∃y(~象y& 動物y)}
に於いて、
②=③ ではなく、実際には、
②⇒③ である。
従って、
(19)(22)により、
(23)
③「象も動物である。」といふ「日本語」は、
② ∀x{象x→動物x&~(~象x→~動物x)}といふ「論理式」ではなく、
③ ∀x{象x→動物x&∃y(~象y&動物y)}といふ「論理式」に、相当する。
といふ「主張」は、「矛盾」しない。
従って、
(23)により、
(24)
③ 象も動物である。⇔
③ ∀x{象x→動物x&∃y(~象y&動物y)}⇔
③ すべてのxについて、xが象であるならば、xは動物であり、あるyは象以外の動物である。
といふ「等式」が、成立する。
(01)
(ⅰ)
1 (1) ~P∨ Q A
2 (2) P&~Q A
3 (3) ~P A
2 (4) P 2&E
23 (5) ~P&P 34&I
3 (6)~(P&~Q) 25RAA
7 (7) Q A
2 (8) ~Q 2&E
2 7 (9) Q&~Q 67&I
7 (ア)~(P&~Q) 29RAA
1 (イ)~(P&~Q) 1367ア∨E
ウ (ウ) P A
エ(エ) ~Q A
ウエ(オ) P&~Q ウエ&I
1 ウエ(カ)~(P&~Q)&
(P&~Q) イオ&I
1 ウ (キ) ~~Q エカRAA
1 ウ (ク) Q キDN
1 (ケ) P→ Q ウクCP
(ⅱ)
1 (1) P→Q A
2 (2) ~(~P∨Q) A
3(3) ~P A
3(4) ~P∨Q 3∨I
23(5) ~(~P∨Q)&
(~P∨Q) 24&I
2 (6) ~~P 35RAA
2 (7) P 6DN
12 (8) Q 17MPP
12 (9) ~P∨Q 8∨I
12 (ア) ~(~P∨Q)&
(~P∨Q) 29&I
1 (イ)~~(~P∨Q) 2アRAA
1 (ウ) ~P∨Q イDN
従って、
(01)により、
(02)
① ~P∨Q(PでないかQである)。
② P→Q(Pならば、Qである)。
に於いて、
①=② であって、この「等式」を「含意の定義」といふ。
然るに、
(03)
(ⅲ)
1(1) Q A
1(2)~P∨Q 1∨I
1(3) P→Q 2含意の定義
従って、
(03)により、
(04)
③ Q├ P→Q
といふ「連式(Sequent)」は「妥当」であり、このことは、
③「任意の命題(Q)は、任意の仮言命題(P→Q)の後件(Q)である。」
といふことを、示してゐる。
然るに、
(05)
(ⅲ)
1(1) Q A
1(2) ~P∨Q 1∨I
1(3) P→Q 2含意の定義
(4)Q→(P→Q)
然るに、
(06)
系Ⅰ:任意の連式は、それがトートロジー的であるときまたそのときに限って導出可能である。
(E.J.レモン、論理学初歩、竹尾治一郎・浅野楢英 訳、1973年、114頁)
従って、
(05)(06)により、
(07)
③ Q→(P→Q)
③ Qならば(PならばQである)。
は「恒真式(トートロジー)」である。
従って、
(07)により、
(08)
③ 任意のQとPに於いて、
③ Q→(P→Q)
③ Qならば(PならばQである)。
は、「恒に、真(本当)」である。
従って、
(08)により、
(09)
P=太陽は東から昇る。
Q=バカボンのパパは天才である。
として、
③ バカボンのパパが天才であるならば(太陽が東から昇るならば、バカボンのパパは天才である)。
といふ「仮言命題」は、「恒に、真(本当)」である。
然るに、
(10)
③ 太陽は東から昇る。
といふ「命題」は「真(本当)」である。
然るに、
(11)
③ Q→(P→Q)
が、「恒真式(トートロジー)」であるといふことは、
③ Q→(真→Q) であっても、
③ Q→(偽→Q) であっても、いづれにせよ、「真(本当)」である。
といふ、ことである。
然るに、
(12)
③ Q→(P→Q)
に於いて、
③ Q→(真→Q) であっても、
③ Q→(偽→Q) であっても、いづれにせよ、「真(本当)」である。
といふことは、
③ Qならば(Pであろうと、Pでなかろうと)Qである。
といふことである。
然るに、
(13)
③ Qならば(Pであろうと、Pでなかろうと)Qである。
といふことは、
③ QならばQである(同一律)。
と、「同じ」である。
従って、
(09)(13)により、
(14)
③ バカボンのパパが天才であるならば(太陽が東から昇るならば、バカボンのパパは天才である)。
といふ「恒真式(トートロジー)」は、
③ バカボンのパパが天才であるならば、バカボンのパパは天才である。
といふ「同一律(Q→Q)」と「同じ」である。
然るに、
(15)
(ⅲ)
(1) Q→Q 定理導入の規則(TI)
(2)~Q∨Q 含意の定義
(ⅳ)
(1)~Q∨Q 定理導入の規則(TI)
(2) Q→Q 含意の定義
従って、
(15)により、
(16)
③ Q→Q (同一律)
④ ~Q∨Q (排中律)
に於いて、
③=④ である。
従って、
(14)(15)(16)により、
(17)
③ バカボンのパパが天才であるならば(太陽が東から昇るならば、バカボンのパパは天才である)。
といふ「恒真式(トートロジー)」は、
③ バカボンのパパが天才であるならば、バカボンのパパは天才である。
といふ「同一律(Q→Q)」と「同じ」であって、
③ バカボンのパパが天才であるならば、バカボンのパパは天才である。
といふ「同一律(Q→Q)」は、
③ バカボンのパパは天才でないか、もしくは、バカボンのパパは天才である。
といふ「排中律(~Q∨Q)」と、「同じ」である。
然るに、
(18)
③ バカボンのパパは天才でないか、もしくは、バカボンのパパは天才である。
といふのであれば、
③ バカボンのパパは天才である。
とは、言へない。
従って、
(17)(18)により、
(19)
P=太陽は東から昇る。
Q=バカボンのパパは天才である。
として、
③ バカボンのパパが天才であるならば(太陽が東から昇るならば、バカボンのパパは天才である)。
といふ「仮言命題」は、「恒に、真(本当)」であって、
③ 太陽は東から昇る。
といふ「命題」も「真(本当)」であるが、
③ バカボンのパパは天才である。
といふ「命題」は、「真(本当)」であるとは、限らない。
従って、
(04)(19)により、
(20)
③「任意の命題(Q)は、任意の仮言命題(P→Q)の後件(Q)である。」が、
③「後件(Q)の真偽(本当・ウソ)は、不明である。」