日本語の「は」と「が」について。

象は鼻が長い=∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
とりあえず「三上文法」を「批判」します。

(523)「象も動物である」の「述語論理」。

2020-02-21 19:30:31 | 象は鼻が長い、述語論理。

(01)
①{、机、車}であれば、
①{象動物であり}、
②{}であれば、
②{象動物である}。
従って、
(01)により、
(02)
① 象が動物である=象は動物であり、象以外(机、車)は動物でない
② 象動物である=象は動物であり、象以外(兎、馬)も動物である
に於いて、①と②は、
① 象以外は動物でない
② 象以外も動物である
の「部分」が、「矛盾」する。
然るに、
(03)
① 象動物である=象は動物であり、象以外は動物でない
といふ「命題」は、
① ∀x(象x→動物x&~象x→~動物x)
① すべてのxについて(xが象であるならば、xは動物であり、xが動物でなければ、xは動物ではない)。
といふ風に、書くことが出来る。
従って、
(02)(03)により、
(04)
① 象が動物である=象は動物であり、象以外は動物でない。
② 象も動物である=象は動物であり、象以外も動物である。
に於いて①と②は、
①   ~象x→~動物x
② ~(~象x→~動物x)
の「部分論理式」が、「矛盾」する。
従って、
(03)(04)により、
(05)
① 象が動物である=象は動物であり、象以外は動物でない。
② 象も動物である=象は動物であり、象以外も動物である。
といふ「日本語」は、それぞれ、
① ∀x{象x→動物x&    ~象x→~動物x}
② ∀x{象x→動物x&~(~象x→~動物x)}
といふ「述語論理」に、相当する。
然るに、
(06)
109 ∀x(Fx&Gx)┤├ ∀xFx&∀xGx
(a) 1(1)∀x(Fx&Gx) A
1(2)   Fa&Ga  1UE
1(3)   Fa     2&E
1(4) ∀xFx     3UI
1(5)      Ga  2&E
1(6)    ∀xGx  5UI
1(7)∀xFx&∀xGx 46&I
(b)
1(1)∀xFx&∀xGx A
1(2)∀xFx      1&E
1(3)  Fa      2UE
1(4)     ∀xGx 1&E
1(5)       Ga 4UE
1(6)   Fa&Ga  35&I
1(7)∀x(Fx&Gx) 6UI
109の、相互導出可能性の結果は、普遍量記号連言の仲間であることからすれば、全く予想されることである。
(E.J.レモン 著、武生治一郎・浅野楢英 訳、論理学初歩、1973年、151・153頁改)。
従って、
(05)(06)により、
(07)
① ∀x{象x→動物x&    ~象x→~動物x}
② ∀x{象x→動物x&~(~象x→~動物x)}
といふ「式」は、
① ∀x(象x→動物x)& ∀x(~象x→~動物x)
② ∀x(象x→動物x)&∀x~(~象x→~動物x)
といふ「式」に「等しい」。
然るに、
(08)
(ⅱ)
1(1)∀x~(~象x→~動物x) A
1(2)  ~(~象a→~動物a) 1UE
1(3)   ~(象a∨~動物a) 2含意の定義
1(4)    ~象a& 動物a  3ド・モルガンの法則
1(5) ∀x(~象x& 動物x) 4UI
(ⅲ)
1(1) ∀x(~象x& 動物x) A
1(2)    ~象a& 動物a  1UE
1(3)   ~(象a∨~動物a) 2ド・モルガンの法則
1(4)   ~(象a→~動物a) 3含意の定義
1(5) ∀x~(象a→~動物a) 4UI
従って、
(08)により、
(09)
② ∀x~(~象x→~動物x)
③   ∀x(~象x& 動物x)
に於いて、
②=③ である。
従って、
(06)~(09)により、
(10)
② ∀x{象x→動物x & ~(~象x→~動物x)}
③ ∀x(象x→動物x)&∀x(~象x& 動物x)
に於いて、
②=③ である。
然るに、
(11)
③ ∀x(象x→動物x)&∀x(~象x& 動物x)
に於いて、
③ ∀x(~象x&動物x)
といふ「論理式」は、
③ すべてのxは、象以外の動物である。
といふ「意味」である。
従って、
(10)(11)により、
(12)
② ∀x{象x→動物x & ~(~象x→~動物x)}
③ ∀x(象x→動物x)&∀x(~象x& 動物x)
といふ「論理式(命題)」は、
③ すべてのxについて、xが象であるならば、xは動物であり、すべてのxは象以外の動物である。
といふ「意味」である。
然るに、
(13)
③ すべてのxについて、xが象であるならば、xは動物であり、すべてのxは象以外の動物である
といふことは、
②{象、兎、馬}ではなく、例へば、
③{、兎、馬}でなければ、ならない。
然るに、
(14)
③ すべてのxについて、xが象であるならば、xは動物であり、すべてのxは象以外の動物である。
ではなく、
③ すべてのxについて、xが象であるならば、xは動物であり、あるyは象以外の動物である。
であるならば、
③{象、兎、馬}であるため、「問題」は無い
然るに、
(15)
③ すべてのxについて、xが象であるならば、xは動物であり、あるyは象以外の動物である。
であるならば、
③ ∀x{象x→動物x&∃y(~象y&動物y)}
である。
従って、
(01)~(15)により、
(16)
③{象、兎、馬}であれば、
③{象動物である}であるため、
③「象動物である。」といふ「日本語」は、
② ∀x{象x→動物x&~(~象x→~動物x)}
といふ「論理式」ではなく、
③ ∀x{象x→動物x&∃y(~象y&動物y)}
といふ「論理式」に、相当する。
然るに、
(17)
(ⅱ)
1   (1) ∀x{象x→動物x&~(~象x→~動物x)} A
1   (2)    象a→動物a&~(~象a→~動物a)  1UE
1   (3)    象a→動物a              2&E
1   (4)           ~(~象a→~動物a)  2&E
 5  (5)           ~(~象a& 動物a)  A
  6 (6)             ~象a        A
   7(7)                  動物a   A
  67(8)             ~象a& 動物a   67&I
 567(9)           ~(~象a& 動物a)&
                   (~象a& 動物a)  58&I
 56 (ア)                 ~動物a   79RAA
 5  (イ)             ~象a→~動物a   6アCP
15  (ウ)           ~(~象a→~動物a)
                   (~象a→~動物a)  4イ&I
1   (エ)          ~~(~象a& 動物a)  5ウRAA
1   (オ)             ~象a& 動物a   エDN
1   (カ)          ∃y(~象y& 動物y)  オEI
1   (キ)   象a→動物a&∃y(~象y& 動物y)  3カ&I
1   (ク)∀x{象x→動物x&∃y(~象y& 動物y)} キUI
(ⅲ)
1   (1)∀x{象x→動物x&∃y(~象y& 動物y)} A
1   (2)   象a→動物a&∃y(~象y& 動物y)  1UR
1   (3)   象a→動物a               2&E
1   (4)          ∃y(~象y& 動物y)  2&E
 5  (5)             ~象a& 動物a   A
  6 (6)             ~象a→~動物a   A
 5  (7)             ~象a        5&E
  6 (8)                  動物a   5&E
 56 (9)                 ~動物a   67MPP
 56 (ア)             動物a&~動物a   89&I
 5  (イ)           ~(~象a→~動物a)  6アRAA
1   (ウ)           ~(~象a→~動物a)  45イEE
1   (エ)    象a→動物a&~(~象a→~動物a)  3ウ&I
1   (オ) ∀x{象x→動物x&~(~象x→~動物x)} エUI
従って、
(17)により、
(18)
② ∀x{象x→動物x&  ~(~象x→~動物x)}
③ ∀x{象x→動物x&∃y(~象y& 動物y)}
に於いて、
②=③ である(?)。
従って、
(16)(17)(18)により、
(19)
③「象も動物である。」といふ「日本語」は、
② ∀x{象x→動物x&~(~象x→~動物x)}といふ「論理式」ではなく
③ ∀x{象x→動物x&∃y(~象y&動物y)}といふ「論理式」に、相当する。
と言ってゐるにも拘らず、実際には、
②=③ である。
といふことになってしまい、「お前の言ってゐることは、矛盾である」。
といふ、ことになる。
然るに、
(20)
 1 (1)∃xFx A
  2(2)  Fa A
 1 (3)  Fa 122EE
 1 (4)∀xFx 3UI
UIの適用は正しい。なぜならば、1は「a」を含まないからである。しかし、EEの適用は正しくない。
(E.J.レモン 著、武生治一郎・浅野楢英 訳、論理学初歩、1973年、147頁)
従って、
(17)(20)により、
(21)
(ⅲ)
1   (ウ)           ~(~象a→~動物a)  45イEE
1   (エ)    象a→動物a&~(~象a→~動物a)  3ウ&I
1   (オ) ∀x{象x→動物x&~(~象x→~動物x)} エUI
といふ「3行」も、「マチガイ」である。
従って、
(17)(18)(21)により、
(22)
② ∀x{象x→動物x&  ~(~象x→~動物x)}
③ ∀x{象x→動物x&∃y(~象y& 動物y)}
に於いて、
②=③ ではなく、実際には、
③ である。
従って、
(19)(22)により、
(23)
③「象動物である。」といふ「日本語」は、
② ∀x{象x→動物x&~(~象x→~動物x)}といふ「論理式」ではなく、
③ ∀x{象x→動物x&∃y(~象y&動物y)}といふ「論理式」に、相当する。
といふ「主張」は、「矛盾しない
従って、
(23)により、
(24)
③ 象動物である。⇔
③ ∀x{象x→動物x&∃y(~象y&動物y)}⇔
③ すべてのxについて、xが象であるならば、xは動物であり、あるyは象以外の動物である。
といふ「等式」が、成立する。


(522)「任意の命題」は「任意の仮言命題の後件」であるが、「真」であるとは限らない(其の?)。

2020-02-21 13:23:12 | 論理

(01)
(ⅰ)
1     (1) ~P∨ Q   A
 2    (2)  P&~Q   A
  3   (3) ~P      A
 2    (4)  P      2&E
 23   (5) ~P&P    34&I
  3   (6)~(P&~Q)  25RAA
   7  (7)     Q   A
 2    (8)    ~Q   2&E
 2 7  (9)  Q&~Q   67&I
   7  (ア)~(P&~Q)  29RAA
1     (イ)~(P&~Q)  1367ア∨E
    ウ (ウ)  P      A
     エ(エ)    ~Q   A
    ウエ(オ)  P&~Q   ウエ&I
1   ウエ(カ)~(P&~Q)&
          (P&~Q)  イオ&I
1   ウ (キ)   ~~Q   エカRAA
1   ウ (ク)     Q   キDN
1     (ケ)  P→ Q   ウクCP
(ⅱ)
1  (1)    P→Q   A
 2 (2) ~(~P∨Q)  A
  3(3)   ~P     A
  3(4)   ~P∨Q   3∨I
 23(5) ~(~P∨Q)&
        (~P∨Q)  24&I
 2 (6)  ~~P     35RAA
 2 (7)    P     6DN
12 (8)      Q   17MPP
12 (9)   ~P∨Q   8∨I
12 (ア) ~(~P∨Q)&
        (~P∨Q)  29&I
1  (イ)~~(~P∨Q)  2アRAA
1  (ウ)   ~P∨Q   イDN
従って、
(01)により、
(02)
① ~P∨Q(PでないかQである)。
②  P→Q(Pならば、Qである)。
に於いて、
①=② であって、この「等式」を「含意の定義」といふ。
然るに、
(03)
(ⅲ)
1(1)   Q A
1(2)~P∨Q 1∨I
1(3) P→Q 2含意の定義
従って、
(03)により、
(04)
③ Q├ P→Q
といふ「連式(Sequent)」は「妥当」であり、このことは、
③「任意命題(Q)は、任意仮言命題(P→Q)の後件(Q)である。」
といふことを、示してゐる。
然るに、
(05)
(ⅲ)
1(1)     Q A
1(2)  ~P∨Q 1∨I
1(3)   P→Q 2含意の定義
 (4)Q→(P→Q)
然るに、
(06)
系Ⅰ:任意の連式は、それがトートロジー的であるときまたそのときに限って導出可能である。
(E.J.レモン、論理学初歩、竹尾治一郎・浅野楢英 訳、1973年、114頁)
従って、
(05)(06)により、
(07)
③ Q→(P→Q)
③ Qならば(PならばQである)。
は「恒真式(トートロジー)」である。
従って、
(07)により、
(08)
③ 任意のQとPに於いて、
③ Q→(P→Q)
③ Qならば(PならばQである)。
は、「恒に、真(本当)」である。
従って、
(08)により、
(09)
P=太陽は東から昇る。
Q=バカボンのパパは天才である。
として、
③ バカボンのパパが天才であるならば(太陽が東から昇るならば、バカボンのパパは天才である)。
といふ「仮言命題」は、「恒に、真(本当)」である。
然るに、
(10)
③ 太陽は東から昇る。
といふ「命題」は「真(本当)」である。
然るに、
(11)
③ Q→(P→Q)
が、「恒真式(トートロジー)」であるといふことは、
③ Q→(真→Q) であっても、
③ Q→(偽→Q) であっても、いづれにせよ、「真(本当)」である。
といふ、ことである。
然るに、
(12)
③ Q→(P→Q)
に於いて、
③ Q→(真→Q) であっても、
③ Q→(偽→Q) であっても、いづれにせよ、「真(本当)」である。
といふことは、
③ Qならば(Pであろうと、Pでなかろうと)Qである。
といふことである。
然るに、
(13)
③ Qならば(Pであろうと、Pでなかろうと)Qである。
といふことは、
③ QならばQである(同一律)。
と、「同じ」である。
従って、
(09)(13)により、
(14)
③ バカボンのパパが天才であるならば(太陽が東から昇るならば、バカボンのパパは天才である)。
といふ「恒真式(トートロジー)」は、
③ バカボンのパパが天才であるならば、バカボンのパパは天才である。
といふ「同一律(Q→Q)」と「同じ」である。
然るに、
(15)
(ⅲ)
(1) Q→Q 定理導入の規則(TI)
(2)~Q∨Q 含意の定義
(ⅳ)
(1)~Q∨Q 定理導入の規則(TI)
(2) Q→Q 含意の定義
従って、
(15)により、
(16)
③  Q→Q (同一律)
④ ~Q∨Q (排中律)
に於いて、
③=④ である。
従って、
(14)(15)(16)により、
(17)
③ バカボンのパパが天才であるならば(太陽が東から昇るならば、バカボンのパパは天才である)。
といふ「恒真式(トートロジー)」は、
③ バカボンのパパが天才であるならば、バカボンのパパは天才である。
といふ「同一律(Q→Q)」と「同じ」であって、
③ バカボンのパパが天才であるならば、バカボンのパパは天才である。
といふ「同一律(Q→Q)」は、
③ バカボンのパパは天才でないか、もしくは、バカボンのパパは天才である。
といふ「排中律(~Q∨Q)」と、「同じ」である。
然るに、
(18)
③ バカボンのパパは天才でないか、もしくは、バカボンのパパは天才である
といふのであれば、
③ バカボンのパパは天才である
とは、言へない
従って、
(17)(18)により、
(19)
P=太陽は東から昇る。
Q=バカボンのパパは天才である。
として、
③ バカボンのパパが天才であるならば(太陽が東から昇るならば、バカボンのパパは天才である)。
といふ「仮言命題」は、「恒に、真(本当)」であって、
③ 太陽は東から昇る。
といふ「命題」も「真(本当)」であるが、
③ バカボンのパパは天才である。
といふ「命題」は、「真(本当)」であるとは、限らない。
従って、
(04)(19)により、
(20)
③「任意の命題(Q)は、任意の仮言命題(P→Q)の後件(Q)である。」が、
③「後件(Q)の真偽(本当・ウソ)は、不明である。」