日本語の「は」と「が」について。

象は鼻が長い=∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
とりあえず「三上文法」を「批判」します。

(176)「民無二王。」の「述語論理」。

2019-04-16 14:41:17 | 訓読・論理学

(01)
孔子曰天無二日、民無二王。
孔子曰く、天に二つの太陽は無く、民に二人の王は無い(孟子、萬章章句上)。
(02)
「≠」を「<>」と書くこととし、それ故、「<>ではない」が「=」であって、「=ではない」が「<>」です。
(03)
(ⅰ)
1   (1)  ∃x{王x&∀y(王y→x=y)} A
 2  (2)     王a&∀y(王y→a=y)  A
 2  (3)     王a             2&E
 2  (4)        ∀y(王y→a=y)  2&E
 2  (5)           王b→a=b   4UE
 2  (6)          ~王b∨a=b   5含意の定義
 2  (7)       ~~(~王b∨a=b)  6DN
 2  (8)       ~(~~王b&a<>b)  7ド・モルガンの法則
 2  (9)         ~(王b&a<>b)  8DN
  ア (ア)        ∃y(王y&a<>y)  A
   イ(イ)          (王b&a<>b)  A
 2 イ(ウ)~(王b&a<>b)&(王b&a<>b)  9イ&I  
 2ア (エ)~(王b&a<>b)&(王b&a<>b)  アイウEE
 2  (オ)       ~∃y(王y&a<>y)  アエRAA
 2  (カ)    王a&~∃y(王y&a<>y)  3オ&I
 2  (キ) ∃x{王x&~∃y(王y&x<>y)} カEI
1   (ク) ∃x{王x&~∃y(王y&x<>y)} 12キEE
(ⅱ)
1   (1) ∃x{王x&~∃y(王y&x<>y)} A
 2  (2)    王a&~∃y(王y&a<>y)  A
 2  (3)    王a              2&E
 2  (4)       ~∃y(王y&a<>y)  2&E  
  5 (5)           王b&a<>b   A
  5 (6)        ∃y(王b&a<>y)  5EI
 25 (7)       ~∃y(王y&a<>y)&
               ∃y(王b&a<>y)  46&I
 2  (8)         ~(王b&a<>b)  57RAA
 2  (9)         ~王b&∨a=b   8ド・モルガンの法則
 2  (ア)           王b→a=b   9含意の定義
 2  (イ)        ∀y(王y→a=y)  アUI
 2  (ウ)     王a&∀y(王y→a=y)  3イ&I
 2  (エ)  ∃x{王x&∀y(王y→a=y)} 2EI
1   (オ)  ∃x{王x&∀y(王y→a=y)} 12エEE
従って、
(03)により、
(04)
(ⅰ)∃x{王x& ∀y(王y→x=y)}
(ⅱ)∃x{王x&~∃y(王y&x<>y)}
に於いて、
(ⅰ)ならば(ⅱ)であり、
(ⅱ)ならば(ⅰ)である。
従って、
(04)により、
(05)
(ⅰ)∃x{王x& ∀y(王y→x=y)}
(ⅱ)∃x{王x&~∃y(王y&x<>y)}
に於いて、
(ⅰ)=(ⅱ) である。
従って、
(05)により、
(06)
(ⅰ)あるxは王であり、すべてyについて、yが王であるならば、xはyと同じ人物である。
(ⅱ)あるxは王であり、xではない、あるyが、王である。といふことはない。
(ⅰ)=(ⅱ) である。
従って、
(05)(06)により、
(07)
(ⅰ)∃x{舜x&王x& ∀y(王y→x=y)}
(ⅱ)∃x{舜x&王x&~∃y(王y&x<>y)}
に於いて、すなはち、
(ⅰ)あるxは舜であって、王であり、すべてyについて、yが王であるならば、xはyと同じ人物である。
(ⅱ)あるxは舜であって、王であり、xではない、あるyが、王である。といふことはない。
(ⅰ)=(ⅱ) である。
従って、
(08)
獨舜爲王矣。
獨り舜のみ王たり。
といふ「漢文」は、
(ⅰ)∃x{舜x&王x& ∀y(王y→x=y)}
(ⅱ)∃x{舜x&王x&~∃y(王y&x<>y)}
といふ「述語論理」に、相当する。

(175) 「百獸之見我而敢不走乎」の「述語論理」について。

2019-04-16 09:20:38 | 訓読・論理学

―「昨日の記事(174)」の「続き」を書きます。―
従って、
(17)
③ 以吾從大夫之後。不敢不告也。
③ 吾れは大夫の後に従える以て、敢へてて告げずんばあらざるなり(論語、憲問第十四 22)。
に於ける、
③ 不敢不告也。
の場合も、
③ 必ず、告げるのだ。⇔
③ 告げないことは、決してしないのだ。
といふ、「意味」になる。
従って、
(17)
① 不敢不走。
の場合も、
① 必ず、走る。⇔
① 走らないことは、決してない。
といふ、「意味」になる。
然るに、
(18)
反語
とは、表現されている内容と反対のことを意味する言い方で、多くは疑問形同じ形であり、日本語でも、「そんなこと誰が知ろうか」と言う場合、「誰が知っているか」とたずねているのではなく、逆に「誰も知ってはいない」ということを言っているのである。けっきょく、肯定している場合は否定に、否定している場合は肯定の内容になる。
(旺文社、漢文の基礎、1973年、45頁)。
然るに、
(19)
② 敢不走乎。
は、「反語」である。
従って、
(17)(18)(19)により、
(20)
② 敢不走乎。
は、「疑問形」ではなく「反語」であるが故に、
① 不敢不走。
② 敢不走乎。
に於いて、
①=② である。
従って、
(17)(20)により、
(21)
② 百獸之見我而敢不走乎=
② 百獸之見(我)而敢不(走)乎=
② 百獸の(我を)見て敢へて(走ら)ざらんや。
に於ける、
② 敢不走乎。
といふ「反語」の場合も、
① 不敢不走。⇔
① 必ず、走る。⇔
① 走らないことは、決してない。
といふ、「意味」になる。
然るに、
(22)
1    (1)  ∃x{我x&∀y(獸y→見yx& 走y)} A
 2   (2)∃x∃y(我x&狐y&獸y&見yx&~走y)  A
  3  (3)     我a&∀y(獸y→見ya& 走y)  1UE
  3  (4)     我a                 3&E
  3  (5)        ∀y(獸y→見ya& 走y)  3&E
  3  (6)           獸b→見ba& 走b   5UE
   7 (7)  ∃y(我a&狐y&獸y&見ya&~走y)  A
    8(8)     我a&狐b&獸b&見ba&~走b   A
    8(9)        狐b              8&E
    8(ア)           獸b           8&E
    8(イ)                  ~走b   8&E
  3 8(ウ)              見ba& 走b   6アMPP
  3 8(エ)              見ba       ウUE
  3 8(オ)                   走b   エUE
  3 8(カ)               ~走b&走b   イオ&I
  3  (キ)          ~獸b           アカRAA
  3 8(ク)       狐b&~獸b           9キ&I
  3 8(ケ)    ∃y(狐y&~獸y)          クEI
  37 (コ)    ∃y(狐y&~獸y)          78ケEE
 23  (サ)    ∃y(狐y&~獸y)          27コEE
12   (シ)    ∃y(狐y&~獸y)          13サEE
12   (〃)    ある狐は獸ではない。          13
従って、
(22)により、
(23)
(1)あるxは我であって、すべてのyについて、yが獸であるならば、yはxを見て、yは走る。 と「仮定」し、
(2)あるxは我であって、あるyは狐であって獸であり、yはxを見ても、yは走らない。 と「仮定」すると、
(3)あるyは狐であって獸でない。 といふ「結論」を得る。
然るに、
(24)
(1)すべての獸は、私を見れば、必ず走る。然るに、
(2)ある狐は、私を見ても走らない。   従って、
(3)ある狐は、獸ではなく(百獸の長である)。
といふ「推論」は、「正しい」。
従って、
(21)~(24)により、
(25)
② 百獸之見我而敢不走乎=
② 百獸之見(我)而敢不(走)乎=
② 百獸の(我を)見て敢へて(走ら)ざらんや=
② すべてのけだものたちは、わたし(の姿)を見れば、必ず(おそれて)逃げだすにちがいありません(旺文社訳、1973年)。
といふ「漢文訓読」は、
② ∃x{我x&∀y(獸y→見yx&走y)}=
② あるxは我であって、すべてのyについて、yが獸であるならば、yはxを見て、yは走る。
といふ「述語論理」に、相当する。