日本語の「は」と「が」について。

象は鼻が長い=∀x{象x→∃y(鼻yx&長y)&∀z(~鼻zx→~長z)}。
とりあえず「三上文法」を「批判」します。

(923)『焼酎割が好きで、医学実験をしていた人』に、「P&Q→R」について「質問」します(Ⅱ)。

2021-06-12 11:21:30 | 論理

(01)
(ⅰ)
1   (1)  P&Q→ R    A
1   (2)~(P&Q)∨R    1含意の定義
 3  (3)~(P&Q)      A
 3  (4)~P∨~Q       3ド・モルガンの法則
 3  (5)~P∨~Q∨R     4∨I
  6 (6)       R    A
  6 (7) ~P∨~Q∨R    6∨I
1   (8) ~P∨~Q∨R    13567∨E
1   (9)~P∨(~Q∨R)   3結合法則
 ア  (ア)~P          A
 ア  (イ)~P∨R        ア∨I
 ア  (ウ) P→R        イ含意の定義
 ア  (エ)(P→R)∨(Q→R) ウ∨I
   オ(オ)     (~Q∨R) A
   オ(カ)       Q→R  オ含意の定義
   オ(キ)(P→R)∨(Q→R) カ∨I
1   (ク)(P→R)∨(Q→R) 2アエオキ∨I
(ⅱ)
1   (1)(P→R)∨(Q→R) A
 2  (2) P&Q        A
  3 (3) P→R        A
    (4) P          2&E
 23 (5)   R        34MPP
   6(6)       Q→R  A
 2  (7)       Q    2&E
 2 6(8)         R  67MPP
12  (9)   R        13568∨E
1   (ア) P&Q→R      29CP
従って、
(01)により、
(02)
① P&Q→R├(P→R)∨ (Q→R)
②(P→R)∨(Q→R)├ P&Q→R
に於いて、
①=② である。
然るに、
(03)
P=薬品Aを投与する。
Q=薬品Bを投与する。
R=患者は死亡した。
とするならば、
① P&Q→R├(P→R)∨(Q→R)
といふ「推論」は、
(ⅰ)「薬品Aと、薬品Bを、同時に投与した」際に、「患者は死亡した」。従って、
(ⅱ)「薬品Aの作用によって、患者は死亡した」か、「薬品Bの作用によって、患者は死亡した」か、または、「薬品Aと薬品Bの、相互作用によって、患者は死亡した。」
といふ「推論」に、相当し、
②(P→R)∨(Q→R)├ P&Q→R
といふ「推論」は、
(ⅰ)「薬品Aの作用によって、患者は死亡する」か、「薬品Bの作用によって、患者は死亡する」か、または、「薬品Aと薬品Bの、相互作用によって、患者は死亡する。」従って、
(ⅱ)「薬品Aと、薬品Bを、同時に投与する」ならば「患者は死亡する」。
といふ「推論」に、相当する。
然るに、
(04)
(ⅰ)「薬品Aと、薬品Bを、同時に投与した」際に、「患者は死亡した」。従って、
(ⅱ)「薬品Aの作用によって、患者は死亡した」か、「薬品Bの作用によって、患者は死亡した」か、または、「薬品Aと薬品Bの、相互作用によって、患者は死亡した。」
といふ「推論」は、
(α)「薬品Aの作用によって、患者は死亡した」といふ「可能性」と、
(β)「薬品Bの作用によって、患者は死亡した」といふ「可能性」と、
(γ)「薬品Aと薬品Bの、相互作用によって、患者は死亡した。」といふ「可能性」による、飽くまでも、3通りの可能性」を、示してゐる。
従って、
(03)(04)により、
(05)
(ⅰ)「薬品Aと、薬品Bを、同時に投与した」際に、「患者は死亡した」。従って、
(ⅱ)「薬品Aの作用によって、患者は死亡した」か、「薬品Bの作用によって、患者は死亡した」か、または、「薬品Aと薬品Bの、相互作用によって、患者は死亡した。」
といふ「推論」からは、
(α)「薬品Aの作用によって、患者は死亡した」。
といふ風に、「断定」することは、出来ない
従って、
(03)(04)(05)により、
(06)
① P&Q→R├(P→R)∨(Q→R)
といふ「推論」は、
(α)(P→R)
(β)(Q→R)
(γ)(P→R)∨(Q→R)
といふ「3通りの可能性」を、示してゐる。
従って、
(07)
① P&Q→R├(P→R)∨(Q→R)
といふ「推論」が「妥当」であるからと言って、
(α)(P→R)
であると、「断定」することは、出来ない
従って、
(07)により、
(08)
① P&Q→R
② P→R
に於いて、
① であることは、
② であると「断定」する上での、「十分条件」ではない
cf.
① P&Q
② P
に於いて、
① であることは、
② であることの、「十分条件」であり、
② であることは、
① であることの、「必要条件」である。
従って、
(08)により、
(09)
(ⅰ)P&Q→R。従って、
(ⅱ)P→R。  然るに、
(ⅲ)P。    従って、
(ⅳ)  R。
といふ「推論」は、「無効(Invalid)」である。
従って、
(10)
(ⅰ)P&Q→R。従って、
(ⅱ)P→R。  然るに、
(ⅲ)P。    従って、
(ⅳ)  R。
に於いて、
P=直角三角形である。
Q=二等辺三角形である。
R=斜辺の長さは「底辺の長さ」の√2倍である。
として、
(ⅰ)「直角・二等辺三角形」であるならば、斜辺の長さは「底辺の長さ」の√2倍である。従って、
(ⅱ)    「直角三角形」であるならば、斜辺の長さは「底辺の長さ」の√2倍である。然るに、
(ⅲ)    「直角三角形」である。従って、
(ⅳ)斜辺の長さは「底辺の長さ」の√2倍である。
といふ「推論」は、「無効(Invalid)」である。
従って、
(11)
(α)「三辺の比」が「1:√2:1」の「直角三角定規」の斜辺の長さは「底辺の長さ」の√2倍である。
(β)「三辺の比」が「1:2:√3」の「直角三角定規」の斜辺の長さは「底辺の長さ」の√2倍である。
といふ「二つの命題」に於いて、
(α)は「真(本当)」であるが、
(β)は「ウソ)」である。