① ""天の川銀河の中で二番目に大きなブラックホールの兆候を発見 <その1>""
2016年1月15日 |研究成果
(ブラックホールの兆候を発見)
★ 概要
慶應義塾大学理工学部物理学科の岡朋治(おか ともはる)教授らの研究チームは、天の川銀河の中心領域にある特異分子雲中に太陽の10万倍の質量を持つブラックホールが潜んでいる兆候を見出しました。多くの銀河の中心に巨大ブラックホールがある事が最近の研究によって分かってきていましたが、その形成・成長のメカニズムは解明されていませんでした。
今回、慶應義塾の研究チームは、天の川銀河の中心核「いて座A*」から約200光年離れた位置に発見された特異分子雲CO–0.40–0.22の詳細な電波観測を行い、その詳細な空間構造と運動を明らかにしました。
これらの結果から、太陽の10万倍もの質量を持つコンパクトな重力源があるとこの分子雲の運動が説明できます。赤外線やX線観測ではこの重力源の位置に対応する天体は見られないこともあり、ブラックホールであるとすると、天の川銀河では中心核「いて座A*」に次いで二番目に大きなものとなります。この事は、太陽の数百倍から10万倍程度の「中質量ブラックホール」が合体を繰り返す事によって中心核巨大ブラックホールが形成され、さらに成長していくというシナリオを支持するものです。
② 研究背景
天の川銀河を含む多くの銀河の中心には、数百万太陽質量(注1)を超える質量をもつ巨大ブラックホールがあると考えられています。
しかしながら、これらの中心核巨大ブラックホールの起源は未だ解明されていません。一つの説として、恒星同士の暴走的合体によって形成された「中質量ブラックホール」(注2)がさらに合体を繰り返し、銀河中心に巨大なブラックホールを形成するというものがあります。
このシナリオを確認するためには、実際にこの「中質量ブラックホール」の存在を確認する必要があります。そしてこれまでに数多くの中質量ブラックホール候補天体の検出が報告されてきましたが、いずれも確定的なものではありませんでした。
③ 研究成果
研究チームは、国立天文台野辺山45メートル電波望遠鏡とASTE 10メートル望遠鏡を用いた観測結果から、天の川銀河の中心領域に4つの高励起ガス塊(注3)を発見していました(図1左; 2012年7月報道発表)。
今回、このうちの一つに含まれる特異分子雲CO–0.40–0.22について、野辺山45メートル電波望遠鏡を用いた21本の分子スペクトル線による詳細観測を行いました。その結果、同分子雲から18本の分子スペクトル線を検出し、分子ガスの詳細な空間分布と運動を描き出すことに成功しました。
(図1:(a) 天の川銀河中心方向の一酸化炭素(CO)115ギガヘルツ/346ギガヘルツ回転スペクトル線強度の合成図。白い部分は高温・高密度ガスが集中している領域を示す。(b) 今回観測対象とした分子雲CO-0.40-0.22周囲のシアン化水素(HCN)355ギガヘルツ回転スペクトル線の積分強度分布と(c) 銀経-速度分布。黄色の楕円は、過去の観測で発見された球殻状に膨張するガスを示す。)
このCO–0.40–0.22は楕円状の空間構造をしており、極めて広い速度幅をもったコンパクトな希薄成分と、やや緩い速度勾配をもつ直径10光年程度の濃密成分から成ります(図2)。一方で、赤外線やX線の観測データと比較しても同分子雲方向には明瞭な対応天体が見られませんでした。また分子雲の中心部にも空洞構造はみられず、超新星爆発などの局所的なエネルギー供給による膨張がこの速度幅の原因であるとは考えにくいのです。では、この分子雲の極めて広い速度幅を作りだした原因は何でしょうか?
研究チームは当該分子雲の形成メカニズムとして、次のような点状重力源による「重力散乱モデル」を提唱しました(図3、4)。
1.巨大な点状重力源に向かって雲が落ちていく。
2.点状重力源に近づくにつれて雲は加速され、近点で最高速度に達する。
3.近点通過後は減速されながら点状重力源から遠ざかっていく。
このモデルは、観測されたCO–0.40–0.22の速度幅のみならず、空間-速度構造を非常によく説明します。そしてこれに従うならば、CO–0.40–0.22の中心には半径0.3光年以下の10万太陽質量の天体が潜んでいることになります。これは、天の川銀河内で最も濃密な球状星団M15の中心部分よりも一桁近く高い質量密度であり、対応天体が見られないことも考え併せると、特異分子雲CO–0.40–0.22の極めて広い速度幅を作りだしたのは、ブラックホールではないかと考えられます。
(図2:一酸化ケイ素(SiO)86ギガヘルツ回転スペクトル線の積分強度図(上図)。同じく一酸化ケイ素スペクトル線の、左図中矢印に沿って作成した位置-速度図(下図)。)