π(パイ、円周率)はいくつでしょうか?3.14ですよね。
今から10年ほど前になりますが「円周率=3」と小学校で教えるようになったという話題がマスコミに取り上げられたことがありました。
それは当時「ゆとり教育の悪しき象徴」として世の中の批判を浴びていました。
確かに、π=3では円周と円に内接する正六角形の外周の長さとが同じになってしまいます。
「富山の鱒ずし」を6等分した画像を見ながら考えてみてください。図形的におかしいですよね。
実は学習指導要領によれば「手計算のときは円周率を3としても良い」ということだったのです。
「・・・しても良い」ですから、しなくても問題はありません。当時小学校の教諭をしていた知人によると「はじめに3で計算させておいて、半年も経たないうちに3.14で計算させるなんて、子供が混乱するだけ。ほとんどの先生は初めから3.14だったと思う」とのことでした。ちなみに今はもうπ=3.14になりましたのでご安心を!
したがって、π=3は「都市伝説」だったようですが、このブーム(?)に火をつけたのは某学習塾の大々的なキャンペーン「ウッソー!?半径×半径×3」でした。あるとき、この「ウッソー!?半径×半径×3」が首都圏の通勤電車の広告として大量に張り出されたのです。
満員電車の中で身動きが取れず、1時間もずーっと窓やドアに貼られたこの広告を見続けた(見続けさせられた)お父さんたちはこう思ったものです。「なにぃ?π=3だと!ゆとり教育許せん!うちの子だけは文科省に洗脳させないぞ。そうだ、早速この塾に通わせよう・・・」
洗脳されたのはお父さんたちだったのですね。
さて、こうした一部分だけを極端に取り上げて全体像を歪ませてしまう手段を使うセミナー講師は世の中にたくさんいます。「誰にでもできる魔法のテクニックをお教えします!」などといった話には十分お気をつけください。
ところでπ=3.05ではいかがでしょう?
「いや、ダメダメ3.14じゃなきゃ!」という方は次の問題を解いてみてください。結構歯ごたえがありますよ。
「円周率が3.05より大きいことを証明せよ。(2003年、東京大学・理系入試問題)」
(人材育成社)