三連休中に第2回定期考査の問題のひな型ができた。過去に作った問題を編集したのだが、うまく試験範囲におさまったようだ。
編集してみたところ、以前、10月に行っていた2学期の中間テストの範囲が、9月に行う前期の第2回定期考査の範囲と一致することになってしまった・・・。
例年より授業が若干進んでいる上に、夏休みが短いので、8月中から授業が再開するからだろう。順調にいけば1か月近く授業が進むことになる。
二期制のために、夏休み前の短縮授業も少ない、9月からは「新学期」でないので、午前中授業ではない。しかも夏休み明けは8月25日からの授業。こうしたことで、約3時間、授業が若干進んでいて約3時間、計6時間ほど。こんなことが授業の進度を速めるようだ。
授業が若干進んだのは、少人数のためか、生徒たちのできが良くなってきていて、連立方程式の理解度も深まっている。こうしたことで、以前は私が黒板で解答をしていたものを、生徒に解かせることができ、そうすることで、生徒が家庭学習をしてくるといった好循環ができたようだ。中間層が伸びてきているように思う。
また、以前は進度の都合で省略していた「章の問題」(章のまとめ問題)にも取り組めるし、それも生徒に解かせることができるようになった。
今ねらっているのは、「分からなかったら、友達に聞くこと。聞ける友達を作ること」と指導している。方程式の応用問題などは、中程度以上の成績でないと解けないのだが、不幸?にして指名の末当たってしまうこともある。そんなときは自力で解けないのなら・・・、ということで友達に聞くことを指導する。勉強が出来ない生徒、苦手な生徒
は、聞ける友達がいないことが多い。孤立しているのだ。
友達に聞けということで教え合うネットワークができれば、学年の学力も伸びるだろう。区のテストでも数学は区の平均点を上回り、目標点(区が決めたもの、おそらく都の予想平均点だろう)を上回っている。
検証はしていないが、1年生だったとき、1月に行った数学コンテストのあとの再テストの取り組みも成績向上に役立ったと思いたい。
編集してみたところ、以前、10月に行っていた2学期の中間テストの範囲が、9月に行う前期の第2回定期考査の範囲と一致することになってしまった・・・。
例年より授業が若干進んでいる上に、夏休みが短いので、8月中から授業が再開するからだろう。順調にいけば1か月近く授業が進むことになる。
二期制のために、夏休み前の短縮授業も少ない、9月からは「新学期」でないので、午前中授業ではない。しかも夏休み明けは8月25日からの授業。こうしたことで、約3時間、授業が若干進んでいて約3時間、計6時間ほど。こんなことが授業の進度を速めるようだ。
授業が若干進んだのは、少人数のためか、生徒たちのできが良くなってきていて、連立方程式の理解度も深まっている。こうしたことで、以前は私が黒板で解答をしていたものを、生徒に解かせることができ、そうすることで、生徒が家庭学習をしてくるといった好循環ができたようだ。中間層が伸びてきているように思う。
また、以前は進度の都合で省略していた「章の問題」(章のまとめ問題)にも取り組めるし、それも生徒に解かせることができるようになった。
今ねらっているのは、「分からなかったら、友達に聞くこと。聞ける友達を作ること」と指導している。方程式の応用問題などは、中程度以上の成績でないと解けないのだが、不幸?にして指名の末当たってしまうこともある。そんなときは自力で解けないのなら・・・、ということで友達に聞くことを指導する。勉強が出来ない生徒、苦手な生徒
は、聞ける友達がいないことが多い。孤立しているのだ。
友達に聞けということで教え合うネットワークができれば、学年の学力も伸びるだろう。区のテストでも数学は区の平均点を上回り、目標点(区が決めたもの、おそらく都の予想平均点だろう)を上回っている。
検証はしていないが、1年生だったとき、1月に行った数学コンテストのあとの再テストの取り組みも成績向上に役立ったと思いたい。
※コメント投稿者のブログIDはブログ作成者のみに通知されます