今日で2月も終わる。3月になる。あと31日。明日から1ヶ月間使う定期券も買った。最後の定期券だ。
さて、ただ今自宅でテストの採点をしている。最後の採点である。
「相似の位置」という用語を知っているだろうか?
ほとんどの人は知らないと思う。中学校の数学の教科書にしか出てこない用語だろう。この用語を問う問題は今まで出題したことがなかったので、今回出題してみた。案の定出来が悪い。関連問題も入試には出るはずない。しかし教科書では太字で紹介されている。
Wikiには「相似の位置」という項目はなかった。
その代わりに次の記述があった。
「2つの相似な図形の対応する点どうしが通る直線が1点 O に集まるとき、O を相似の中心と呼ぶ。」
このとき2つの相似な図形は「相似の位置にある」というのだが、教科書の定義は少し違う。
こうだ。
「2つの図形の対応する点どうしを通る直線がすべて1点Oに集まり、Oから対応する点までの距離の比がすべて等しいとき、それらの図形はOを相似の中心として相似の位置にある」という
結果として同値なのだが、こうして相似の位置について教える意味は何なのだろう?
教科書の記述はたぶん背景に相似変換についての考えがあるのだろう。相似な図形の作図の方法について述べている。しかしそれっきりで、すぐに次へと進む。
一方Wikiの方は2つの相似な図形の位置関係を論じている。こちらの視点は何を意図しているのだろうか?
相似については、岩波の「数学事典」で調べても、中学生向けに納得するような記述は見られない。
私の授業では、教科書に沿って作図をさせた後で、Wikiの立場で説明した。
相似の位置の応用例として、地図と実際の場所とを連想させる。
地図の北を正しく北に向けると、地図と実際の場所とが相似の位置にあるのだと説明する。
実際、地図を製図板に貼りつけ三脚で水平に固定し、正しく北に向け、対応する実物と地図上の記号を結ぶ直線を引く。
例えば、地図に山の頂上が▲で示してあるから、地図の▲の真上に直定規を立て、実際の山の頂上の方向に向ければその方向がその直線になる。
こうして複数の直線を引けば、その直線は地図上の1点で交わる。交わった1点は地図上での地図の置かれている場所を指す。これはオリエンテーリングで実際に行われている手法なのだが、相似の位置という用語を教える例としていつも使っている。教科書では相似の利用の問題に「相似の位置の利用」の問題がない。問題集にはかろうじていくつかの問題があったが。
新学習指導要領では数学の時間数が増える。こうした応用例も教科書に反映させるといいのではないだろうか。
さて、ただ今自宅でテストの採点をしている。最後の採点である。
「相似の位置」という用語を知っているだろうか?
ほとんどの人は知らないと思う。中学校の数学の教科書にしか出てこない用語だろう。この用語を問う問題は今まで出題したことがなかったので、今回出題してみた。案の定出来が悪い。関連問題も入試には出るはずない。しかし教科書では太字で紹介されている。
Wikiには「相似の位置」という項目はなかった。
その代わりに次の記述があった。
「2つの相似な図形の対応する点どうしが通る直線が1点 O に集まるとき、O を相似の中心と呼ぶ。」
このとき2つの相似な図形は「相似の位置にある」というのだが、教科書の定義は少し違う。
こうだ。
「2つの図形の対応する点どうしを通る直線がすべて1点Oに集まり、Oから対応する点までの距離の比がすべて等しいとき、それらの図形はOを相似の中心として相似の位置にある」という
結果として同値なのだが、こうして相似の位置について教える意味は何なのだろう?
教科書の記述はたぶん背景に相似変換についての考えがあるのだろう。相似な図形の作図の方法について述べている。しかしそれっきりで、すぐに次へと進む。
一方Wikiの方は2つの相似な図形の位置関係を論じている。こちらの視点は何を意図しているのだろうか?
相似については、岩波の「数学事典」で調べても、中学生向けに納得するような記述は見られない。
私の授業では、教科書に沿って作図をさせた後で、Wikiの立場で説明した。
相似の位置の応用例として、地図と実際の場所とを連想させる。
地図の北を正しく北に向けると、地図と実際の場所とが相似の位置にあるのだと説明する。
実際、地図を製図板に貼りつけ三脚で水平に固定し、正しく北に向け、対応する実物と地図上の記号を結ぶ直線を引く。
例えば、地図に山の頂上が▲で示してあるから、地図の▲の真上に直定規を立て、実際の山の頂上の方向に向ければその方向がその直線になる。
こうして複数の直線を引けば、その直線は地図上の1点で交わる。交わった1点は地図上での地図の置かれている場所を指す。これはオリエンテーリングで実際に行われている手法なのだが、相似の位置という用語を教える例としていつも使っている。教科書では相似の利用の問題に「相似の位置の利用」の問題がない。問題集にはかろうじていくつかの問題があったが。
新学習指導要領では数学の時間数が増える。こうした応用例も教科書に反映させるといいのではないだろうか。