西武園競輪場で争われた昨晩の第66回オールスター競輪の決勝。並びは吉田‐真杉‐平原‐武藤の関東,清水‐山田の西国,犬伏‐松本の四国で古性は単騎。
平原がスタートを取って吉田の前受け。5番手に古性,6番手に清水,8番手に犬伏で周回。残り2周のホームの入口から犬伏が上昇していくと,吉田が早めに誘導を追い抜いて突っ張りました。犬伏は引かざるを得なくなり,周回中と同じ一列棒状で打鐘。ホームから清水が捲り上げていくと真杉が早くも番手捲りを敢行。清水は平原の外を併走することになりました。この競り合いが直線まで続いたため,ふたりとも真杉を抜きにいくことができず,そのまま真杉が差を広げて優勝。競り合いに決着がつかなかったので,直線の手前で武藤を外に弾き,平原と清水の外から伸びた古性が3車身差で2着。古性に弾かれましたが立て直してさらに外から伸びた武藤も競り合う両者を差して4分の3車身差で3着。
優勝した栃木の真杉匠選手は先月の静岡のFⅠ以来の優勝。グレードレースは5月の宇都宮記念以来の優勝でビッグは初制覇。このレースは残り2周を前に吉田が発進し,そのまま残り1周から真杉が番手発進。すぐ後ろが競り合いになり,この競り合いに決着がつかなかったため,真杉にはもってこいの展開になりました。関東勢の結束が導いた優勝といえるでしょう。吉田は規則に反する走行で誘導を追い抜いて先行したため失格になりましたが,僕はこれはいただけないと思います。犬伏も吉田が規則は守るという前提で叩きにいっているのですから,規則違反を覚悟で突っ張られてはレースにならないでしょう。
スピノザがユークリッド原論第3巻命題35を念頭に置いて,第二部定理八備考を記述していることは明白です。そしてこれは読者にとって有益でまた重要な情報といえます。しかし岩波文庫版の『エチカ』では,このことについて何も触れられていません。畠中はいくつかの訳注を付していますし,また本文の中にも自分自身で語句を補ったりしているのですが,この箇所では何も触れていないのです。たぶんこれには次のような理由があります。
岩波文庫版の『エチカ』のカール・ゲプハルトCarl Gebhardtが編集した,いわゆるゲプハルト版を元のテクストとして,それを邦訳しています。このゲプハルト版にはこの点に関する言及はありません。さらに,ゲプハルト版にも図が示されているようなのですが,その図ではスピノザが示している線分Dと線分Eが直交しているようです。つまりそれは岩波文庫版の図に一致しています。つまりこの部分を邦訳するにあたって,畠中はゲプハルト版に完全に依拠したのだと考えられます。
さらにもう一点,河井は次のことをいっています。
畠中の訳では,相互に等しい無限に多くのinfinita矩形が含まれている,となっています。しかしこの部分の原文からすると,無限に多くの相互に等しい矩形が含まれているとすべきだとのことです。これは原文に忠実に訳するか否かだけのことであるように僕には思えるのですが,河井にとってはそうでなく,原文に忠実な訳,つまり畠中の訳より河井の訳の方が,いらぬ誤解を招かないと主張しています。スピノザが参照しているユークリッド原論からは,矩形が等しくなる,これは面積が等しくなるという意味ですが,そのようにさせているのは矩形ではなく円であるのだから,無限に多くの相互に等しい矩形が円の中に含まれるというべきであって,相互に等しい無限に多くの矩形が含まれるというと円の中の,無限に多くの矩形のうちに相互に等しいものがあると解されるおそれがあるというのが,河井がいっていることの主旨と思われます。僕はそこまでこのことにこだわる必要があるのかいささか疑問に感じるのですが,もしも誤解を招きかねないのであれば,修正した方がよいのは確かでしょう。
平原がスタートを取って吉田の前受け。5番手に古性,6番手に清水,8番手に犬伏で周回。残り2周のホームの入口から犬伏が上昇していくと,吉田が早めに誘導を追い抜いて突っ張りました。犬伏は引かざるを得なくなり,周回中と同じ一列棒状で打鐘。ホームから清水が捲り上げていくと真杉が早くも番手捲りを敢行。清水は平原の外を併走することになりました。この競り合いが直線まで続いたため,ふたりとも真杉を抜きにいくことができず,そのまま真杉が差を広げて優勝。競り合いに決着がつかなかったので,直線の手前で武藤を外に弾き,平原と清水の外から伸びた古性が3車身差で2着。古性に弾かれましたが立て直してさらに外から伸びた武藤も競り合う両者を差して4分の3車身差で3着。
優勝した栃木の真杉匠選手は先月の静岡のFⅠ以来の優勝。グレードレースは5月の宇都宮記念以来の優勝でビッグは初制覇。このレースは残り2周を前に吉田が発進し,そのまま残り1周から真杉が番手発進。すぐ後ろが競り合いになり,この競り合いに決着がつかなかったため,真杉にはもってこいの展開になりました。関東勢の結束が導いた優勝といえるでしょう。吉田は規則に反する走行で誘導を追い抜いて先行したため失格になりましたが,僕はこれはいただけないと思います。犬伏も吉田が規則は守るという前提で叩きにいっているのですから,規則違反を覚悟で突っ張られてはレースにならないでしょう。
スピノザがユークリッド原論第3巻命題35を念頭に置いて,第二部定理八備考を記述していることは明白です。そしてこれは読者にとって有益でまた重要な情報といえます。しかし岩波文庫版の『エチカ』では,このことについて何も触れられていません。畠中はいくつかの訳注を付していますし,また本文の中にも自分自身で語句を補ったりしているのですが,この箇所では何も触れていないのです。たぶんこれには次のような理由があります。
岩波文庫版の『エチカ』のカール・ゲプハルトCarl Gebhardtが編集した,いわゆるゲプハルト版を元のテクストとして,それを邦訳しています。このゲプハルト版にはこの点に関する言及はありません。さらに,ゲプハルト版にも図が示されているようなのですが,その図ではスピノザが示している線分Dと線分Eが直交しているようです。つまりそれは岩波文庫版の図に一致しています。つまりこの部分を邦訳するにあたって,畠中はゲプハルト版に完全に依拠したのだと考えられます。
さらにもう一点,河井は次のことをいっています。
畠中の訳では,相互に等しい無限に多くのinfinita矩形が含まれている,となっています。しかしこの部分の原文からすると,無限に多くの相互に等しい矩形が含まれているとすべきだとのことです。これは原文に忠実に訳するか否かだけのことであるように僕には思えるのですが,河井にとってはそうでなく,原文に忠実な訳,つまり畠中の訳より河井の訳の方が,いらぬ誤解を招かないと主張しています。スピノザが参照しているユークリッド原論からは,矩形が等しくなる,これは面積が等しくなるという意味ですが,そのようにさせているのは矩形ではなく円であるのだから,無限に多くの相互に等しい矩形が円の中に含まれるというべきであって,相互に等しい無限に多くの矩形が含まれるというと円の中の,無限に多くの矩形のうちに相互に等しいものがあると解されるおそれがあるというのが,河井がいっていることの主旨と思われます。僕はそこまでこのことにこだわる必要があるのかいささか疑問に感じるのですが,もしも誤解を招きかねないのであれば,修正した方がよいのは確かでしょう。
※コメント投稿者のブログIDはブログ作成者のみに通知されます