極東極楽 ごくとうごくらく

豊饒なセカンドライフを求め大還暦までの旅日記

小さな巨人Ⅵ

2018年02月12日 | デジタル革命渦論

 

                     告子(こくし)    /    孟子    

                                   

         ※ 芽は冷やせば、芽ばえない:斉の女王が愚かになるのも不思議は
           ない。どんなに芽を出しやすい祠でも、一日温めて十日冷やせば、
           とうてい芽を出すことはできないからだ。わたしが王に会うのは
           時たまのことだ。わたしが退出したとたん、冷やす者が大勢現わ
           れるのでは、せっかく温めて芽ばえさせようとしても、どうにも
           ならない。囲碁はとるに足りない遊びだが、それでも心を集中
           なければ上達しない。秋は国いちばんの碁の名人だ。かれが二人
           の弟子に教えたとしよう。一人は一心不乱に先生の説明に耳を煩
           けているが、もう一人のほうは、聞いてはいても心では、「そろ
           そろ白鳥が来るころだ、ひとつ糸弓で獲ってやろう」と考えてい
           る。これではいっしょに学んでいても、前者ほどには上達しない。
           それは知能が劣っているからだろうか。そうではないのだ。 

      【解説】 作り返しの効果は絶大だ。君主が知らず知らずに暗愚になってゆ
           くのも、側近の甘言を縁り返し問かされているからだ。

 

メルガマ購読者のわたしたちはいずれ地震予知は可能だと信じていますがね。 

    

 なぜ、かまぼこ屋がエネルギーのことを考えたのか ❦ No.6 

     ● 地域を自立させる試み

  さて、そこまで活か煮詰まった段階で、いつまでも飲んだくれて話をしているだけではしようがな
 い何かやろうということになり、まず「地域と都市をどう結ぶか」をテー>マに決めました。これま
 では地域が発展することはミニ東京化することだという考え方がありました。その裏返しとして地域
 の人たちには東京に対してコンプレックスみたいなものがあったように思います。
 「でも、まあ、東京といったってもともと田舎者の集まりだし、多くの人や情報や金が集まっている
 だけであって、むしろ、逆に地域がその東京の資源をこれ幸いと利用させてもらおう。使い倒してや
 れ。それぐらいの意気込みでやろうじやないか」
 「だったら、地域の出店は人が集まる東卓につくろう。それも、ど真ん中に」
 「東京のど真ん中は丸の内だ」
 「なんて人が集まるかといえばそれは酒と食い物だろう」
 ということで、とんとん拍子に活か進んで場所文化レストランなるものを丸の内の国際ビルの地下に「
 とかちのE」という名前で出しました。場所文化フォーラムの立ち上げメンバーの▽人が帯広の出身
 でしたので彼を中心にして「十勝のうまいものが東京で食べられます」というかたちにしたわけです。
 けれども、レストランをやるといっても儲けることが目的ではありません。

  これからのまちづくりのモデルになるようなしかけをすることが本当の目的でしたから、顔の見え
 る人だちからお金を集めるために会社の形態を「合同会社」(LLC)にしました。そして、運営は
 組合方式(LLP)でやっていくことにしました。われわれ場所文化フォーラムのメンバーには法律
 家も金融の専門家もおりますので、知恵を出してもらってそういうかたちにしたわけです。いわゆる
 LLCとLLPを組み合わせるかたちを取ったのは場所文化レストラン「とかちの・・・」が日本で最
 初のケースだと思います。
  なぜ、株式会社にしなかったのかというと、株式会社という仕組みは顔の見えない人だちからお金
 を集めることを前提にしていますから、権利・義務が複雑で、それを守るためのルールが細かく規定
 されていてやりにくい。ところが、合同会社というのは基本的に顔の見える人だちからしかお金を集
 めませんので、ルールが簡単でたいへんに使い勝手がよいわけです。

  この「とかちの・・・」も20入の顔の見えるメンバーが出資をしてスタートしました。配当はありま
 せん。代わりに食事券が毎年配られます。食事券を使うために友達を誘って行きます。当初のメンバ
 ーは変わり者ばかりですから、友達もユニークです。行くたびに必ず新しい出会いがあって、人的な
 ネットワークがどんどん広がっていきました。経営的にも軌道に乗りまして、いまから3年前 少し
 バージョンアップしようということになり、同じビルの同じフロアに今度は「にっぽんの・・・」とい
 うちょっと大きな店をつくりました。やはりLLCとLLPを組み合わせるかたちを取って出資者は
 40人に増えました。このプロジェクトには資金面で日本政策投資銀行がサポートに
 入ってくれました。

  いま、そのモデルを使った街づくりの取り組みが、私たちの仲間の手によって全国各地、たとえば、
 群馬・高崎の屋台村プロジェクトや、北海道帯広のビルの再生プロジェクト、愛媛・宇和島の旅館の
 再生プロジェクトなど、まさに燎原の大のように展開され始めています。
  それらの動きと並行して2008年、北海道の洞爺湖町にあるホテルを会場にして世界から首脳が
 集まり、環境サミットが行なわれました。われわれはわれわれでもっと地に足の着いたサミットをや
 ろうということになり、同じ年の夏に帯広で「ローカルサミット」なる企てを開きました。2泊3日
 で全国各地から、街づくりの実践者が150人ほど集まって十勝の場所文化を見たり昧わったりしな
 がら金融とか、農業とか、街づくりとか、環境とか、いろんな切り口からテーマを決めてディスカッ
 ションをしたのです。

  盛り上がってたいへん好評でした。
  愛媛銀行の役員の方がたまたま「とかちの・言に連れてこられ、ローカルサミットに誘われて参加
 しておりまして、感動して帰りがけに「2回目はどこでやるんですか」と質問してきました。私たち
 は2回目を考えておりませんでしたが、場所文化フオーラムには「言い出しっぺがやる」という自主
 ルールがありますので、「松山でやりましょうか」
 と持ちかけたところ、「ぜひ、やらせてください」ということになり、明くる年、愛媛銀行のバック
 アップを得て、第2回ローカルサミットを愛媛の松山と宇和島で開催しました。参加者が200人ぐ
 らいに増えてたいへんに盛り土がりました。2回目が終わって、「2回やっちやったから、これでも
 うやめられないね」という話になりました。

 「続けてやるのであれば開催の雛型をきちんとつくってやらないといけないね」そう言うと、みんな
 が私を見るものですから、「わかりました。小田原でやりましょう」と言わざるを得なくなって、半
 ば自然の流れで3回目が小田原に決まり、2010年10月22日から24日までの3日間、「小田原・
 箱根・こゆるぎモデル」をトータルデザインすることを目的に「オープニング&レセプション」「フ
 ィールドスタディ」「GH小田原評定」の3部構成で間催しました。「G11小田原評定」は「ものづ
 くり」「商流」「あきない」「金融」「食」「健康・医療・介護」「農林水産」「環境」「教育」「
 美と空間」「アジア」というHのテーマで、それぞれにグループセッションを構成して、「これまで
 のすべてをお金で測る物差しだけでなく、これからの新しい文明の地平を切り拓くもう一つの『物差
 し』を探す」という切り口で各テーマを掘り下げました。

  2011年は東日本大震災を挟んで富山県の南砺市で第4回、2012年はエネルギーの問題を加
 味して鹿児島県の阿久根市で第5回を。2013年の第6回は群馬県高崎市から福島県南相馬市とい
 う広域で開催する予定です。
  そんな一連の活動から紡ぎだされたのが以下のキーワードです。
 「確かな未来は懐かしい過去にある」「お金の物差しからいのちの物差し」「フォアキャストからバ
 ックキャスト」「無数の小さな循環を」などなど。そして、それらを具現化する活動が全国各地で実
 践され始めてきました。
  そんななかで起こった3・11だったのです。


                                       この項つづく

      
     
No.149 

【サーモタイル篇:最新光レクテナ技術Ⅲ】 

 ● 28.3THzにおけるAl2O3MIM受動レクテナによる光整流  

【実験結果】

1.直流測定および分析

高周波アプリケーションでは、MIMダイオードは、微分抵抗、応答性、非直線性、およびカットオフ周波
数の4つのパラメータによって特徴付けられる。ダイオード抵抗(R0)は、式(1)で与えられるように、
印加電圧の電流微分でて得られる。一般に、アンテナへの良好なインピーダンスマッチング達成には、
低い値(R0)を必要とする。


R0 =(I '(V))-1                     (1)                    

ダイオードの応答性(β0)は、ダイオードの整流能力を決定し、式(2)に示すように表すことができる。

β0)= ½(I "(V)/I '(V)                (2)

より高い応答値はACからDCへの変換効率を高め、したがって整流能力を増加させる。最後に、ダイオード
のカットオフ周波数は式(3)で表され、ダイオード容量(C)は式(4)により容易に計算される。

fc =1/2πRAC                        (3)
C  =ε0εrA/d                                                    (4) 

ここでRAはアンテナ抵抗、εr は酸化物の比誘電率(この場合はAl2O3)、Aとdは重なり面積と酸化物の
厚さである。ダイオードのカットオフ周波数とその非線形性を高める1つの方法は、ダイオードの容量を
減らすことです。これは、オーバーラップ面積(A)を減少させ、および/または酸化物の厚さ(d)を増
加させることによって得られる。より厚い酸化物は抵抗の増加を意味するので、トレードオフが存在する。
デバイスに低誘電率酸化物層を組み込むことで、このトレードオフを改善する。

製造されたデバイスのDC特性評価は、KeithleyソースメーターおよびHP電圧計を用いた4点プローブ設定
を使用し実施。デバイスの損傷を防ぐために、電圧スイープは-0.4V~+ 0.4Vに制限。ダイナミック抵抗と
応答性の2つの主な性能パラメータは、式(1)と式(2)を使用してIV測定値から抽出。ノイズの影響の
低減に、ダイオードIV曲線を平滑化し、7次の多項式でフィッティングしてから、抵抗と応答性を計算。
先に述べたように、エネルギー回収アプリケーションでは、ダイオードがゼロバイアスでの動作が重要で
あり、ゼロバイアス抵抗(R0)とゼロバイアス応答性(β0)の計算に焦点を当てる。ダイオードの1つ
の結果が図9に示す。図9は0.44A / Wの(R0)~98kΩおよび(β0)を示す(図9(b))。

この結果は、Au、TiおよびAl 2 O 3の標準値についてのシミュレーション結果(図4に示す)とは多少異
なる。 しかしながら、これらの材料の値は、様々なナノ製造条件のために、標準とは異なる可能性があ
る。 さらに、Al 2 O 3の表面に活性酸素アニオンが存在するためにチタンが酸化されるため、TiO 2の薄
い層がAl 2 O 3の上に形成される可能性がある。 シミュレートされた特性と測定された特性との間の偏差
は、シミュレーションに含まれていない界面での電荷の蓄積に起因する可能性があります。上記に基づい
て、TiO2の薄い層と関連する材料のわずかに異なるパラメータ(図10のキャプションの値を参照)で
スタックアップを再シミュレーションし、結果を図10(b)に図示 。この新しいシミュレーションから得
られた値は、図10(a)に示すように、シミュレーションされたIV曲線と測定されたIV曲線との間の密接
な相関によってさらに検証される測定結果に非常に近い。


10.Au-Al2O3(1.5nm)-TiO2(0.3nm)-Ti MIMダイオードの予想されるI(V)特性、抵抗および応答性をシ
   ミュレートした図である。
WF(Au)= 4.5eV、EA(Al2O3)= 3.5eV、EA(TiO2)= 4.3eV、WF(Ti)= 3.7eV
          
である。
(a)測定されたI(V)データ、それに対応する7次の適合、およびシミュレートされたI(V)。
  
(b)シミュレートされたデータから計算された応答性および抵抗。 面積は200nmのエッジ長まで
   増加する。 

数の違いにより、Ti から Auへの電荷輸送が存在し得ることが明らかである。図9(b)を見ると、作製さ
れたデバイスはゼロバイアス印加時に非ゼロ応答性を有することが分かる。したがって、外部バイアスの
けを借りずにエネルギー収穫アプリケーションに使用できます。応答性(0.44 A / W)は下側にあるが、
これは達成されたゼロバイアス抵抗値(約100kΩ)で期待されます。高い抵抗(2MΩ)を犠牲にしてより
高い応答性を達成できるが、これはレクテナ全体統合と操作には好適とは言えない。

 2.光学計測

この装置のTHzレクテナ動作(すなわち、収集および整流)の能力を確認するためには、高周波特性決定
が重要である。この目的のために、10.6μm(28.3THz)の放射線でレクテナが照射され、整流されたDC電圧
が測定される場合、図11に示すように、カスタム光学測定装置が使用されている。作製されたMIMダイオ
ードのDC特性は、0.44A / Wの応答性(β0)を示す。最大強度が3×10 4 W / m 2の直線偏光された10.6μmの
CO2
レーザーを使用した。ビームは、レクテナからの開回路電圧を測定する際に、ロックイン検出(スタ
ンフォード・リサーチ・システムズSR830)を容易にするために機械的チョッパを通過する。ビームはま
た、図11に示すように、半波長板を通過し、ビームの偏光がアンテナ軸の周りを回転するこを可能にす
る。照明ビーム偏光がアンテナ偏光、すなわちco-pol(0°、180°および360°)と整列すると、出力応答が最大
になる。逆に、照明偏光がアンテナの偏光、すなわちクロスポール(90°および270°)に対して垂直である
場合、レクテナの応答は最小である。作製したAu / Al 2 O 3 / Ti MIMダイオードの開回路電圧依存性を、図
12に示し、信号の開回路電圧に約0°、180°および360°のピークを示す。点は測定データを表し、実線は測
定結果に対する正弦二乗適合度である。


図11 レクテナ装置の光学的特徴付けに使用される光学測定装置の概略図



図12.予備光学測定結果  応答が偏波依存性である(信号が0と180°の周りの共ポールはノイズレベル
    とよく区別されるので)、デバイスから出力電気信号を図示。

図12から明らかなように、85nVの出力電圧(VOC)が実験的に得られ、これは(Vsignal2-Vnoise21/2 ここで、
平均信号電圧は100nVであり、平均ノイズ信号は53nVである。最大レーザ強度(3×104W / m2)にレクテナ
装置の照射面積(3.4×10-5mm2)を掛けて、1020nWのレーザ入力パワー(Pin)を得た。装置の DC 出力は、
(5)によって推定することができる。

Pout = 0.25Voc2 / R0                                 (5)

どこで、Voc2 / R0 (85nV)2 /(98kΩ)である。 1.79×10-20Wの最終的なDC出力電力(Pout)は、参考文献1
の式1を用いて計算した0.25の充填率で値を掛けることによって得られる。最終的なレクテナの効率は
(6)から得られ、1.75×10-14に等しい。


ηrectennaPout/Pin               (6)

測定されたDC出力電力の結果を検証し、測定の信頼性にアクセスするために、体系的な計算も行います。
レクテナでは、蝶ネクタイ型アンテナが波を集める最初のコンポーネントです。我々のシミュレーション
した11%のアンテナ効率を用いて、アンテナで112 nW(ピンの11%)の電力を得る。アンテナから出
てくる電力は、インピーダンスの不一致およびRC結合損失に直面する。アンテナとダイオードのインピー
ダンスミスマッチ効率とRC結合効率は、以下の式から計算される。

ηImpMatch4RAR0/(RA + R022.24×10-3     (7) 
ηRCcoupling = 1/(1 +(RAR0/(RA +R0)ωC)2 = 8.57×10-3  8)

シミュレーションセクションのアンテナインピーダンス(RA~55Ω)、測定されたダイオード抵抗(R0 =
98kΩ
)、および(4)を使用して得られた静電容量1.1fFを使用し、損失後に0.25nW(112nW×ηImpMatch
RC結合損失の後および2.1μW(0.25nW×ηRC結合)の間のインピーダンスミスマッチと、最後のステップ
は、ダイオードに流れ込むAC電力をDC電力にどれだけ変換できるかを計算することです。これの上限は、
AC電力をとり、ダイオードのゼロバイアス応答性を掛けて、予想される最大短絡電流を得ることによって
決定される。直流電力を推定するために実験測定からの開回路電圧を使用したのと同様に、この短絡電流
値を使用して、

Pout = 0.25 Isc2 R0                         (9)

ここで、Iscは、ダイオードの入力電力に応答性(2.1pW * 0.44A / W)を掛けて得られる最大予想短絡電
流です。式(9)を用いて、2.1×10-20Wの出力電力を得た。これは測定された出力DC電力に非常に近い。
さらに、装置からの整流電圧は分極依存性であり、したがって、アンテナによって捕捉されたIRの整流に
よって得られたものであり、ランダム熱雑音ではないことを確認する。また、式(6)を使用してデバイ
スの総合効率を計算した結果、2.05×10-14の値が得られた。

得られる効率は小さいが、ここで使用される MIMダイオードデバイスは、位置合わせの問題のために、
より大きなオーバーラップ面積(200nm)をもただるをえない。 オーバーラップ面積を減少させることに
よって効率を高めることができる。 さらに、ダイオードの非対称性およびその後の整流能力は最良では
なく、さらに最適化できる。 複数の絶縁体層を使用するなどのデバイス構造の最適化により、出力DC
電圧を増加させることができると予想される。 それにもかかわらず、ゼロバイアスで28.3 THz信号の整
流が可能であることがわかる。 これはゼロバイアスでMIMダイオードを使用した28.3 THz信号の整流の
最初のデモンストレーションであり、この結果は、完全に受動的なレクテナ設計などのTHz周波数アプリ
ケーション
用の整流器としてMIMダイオードを適用できることを示唆する。

【結論】

2つの異なる仕事関数金属、すなわち金とチタン間の絶縁層としてAl2O3使用する28.3THz(10.6μm)の
全に受動的なレクテナ設計を実証。ボウタイアンテナは、2つのアーム間のギャップ内の磁界を強化する
ように最適化されている。これらのフィールドは局所化されているので、2つのアームが重なり合ってお
り、捕獲されたフィールドの濃度が最も高い点でMIMダイオードを正確に実現する。 MIMダイオードの
シミュレーション結果が示されており、後に測定されたDC結果と相関する。レクテナデバイスの光閉じ
込めおよび整流能力の評価に、10.6μmCO2レーザーを使用するカスタム光学特性設定が使用されている。
レクテナ出力の詳細な計算が実行され、測定結果とよく一致する。結果は、効率面では最善ではないが、
今後のさらなる研究が期待される分野である。

 君へのショート・メール

この研究開発の成果で人類は無尽蔵のエネルギーを手にする技術を手に入れることができるだろうか?
できるとしたら、わたしたちかもしれないね?

                                          この項了



Credit: Kiyoshi Ota/Bloomberg via Getty Images

 Jan. 6, 2018

● 日本の研究費は十分ではない ?!

 

 

コメント
  • X
  • Facebookでシェアする
  • はてなブックマークに追加する
  • LINEでシェアする