Reinhard Hoffmann, Thomas Seidl and Martin Dugas
Profound effect of normalization on detection of differentially expressed genes in oligonucleotide microarray data analysis
Genome Biol 2002, 3:RESEARCH0033
[
PDF][
Web Site]
・マイクロアレイデータの正規化法による解析結果の違いを比較する。
・データ:マウス, B-cell precursor gene-expression dataset[Hoffmann]
・正規化法
1.Global scaling
2.Invariant set
3.Invariant feature(MBEV, model-based expression values)
4.Invariant feature(AD, average difference)
・統計処理法
1.F, F-test for parametric ANOVA
2.KW, H(Kruskal-Wallis) test for nonparametric ANOVA
3.SAM, significance analysis of microarrays
・有意な発現差を示す遺伝子の数(割合)で評価する。
・概要「
We have employed four different normalization methods and all possible combinations with three different statistical algorithms for detection of differentially expressed genes on a prototype dataset.」
・結論「
Normalization has a profound influence of detection of differentially expressed genes. This influence is higher than that of three subsequent statistical analysis procedures examined.」
・問題点「
The question naturally arises of which combination of algorithms is 'best' for analyzing gene-expression data. There is probably no general answer.」
チェック論文
・A. D. Long, H. J. Mangalam, B. Y. P. Chan, L. Tolleri, G. W. Hatfield, and P. Baldi, Improved Statistical Inference from DNA Microarray Data Using Analysis of Variance and A Bayesian Statistical Framework., J. Biol. Chem., June 1, 2001; 276(23): 19937-19944.