T.R.Golub, D.K.Slonim, P.Tamayo, C.Huard, M.Gaasenbeek, J.P.Mesirov, H.Coller, M.L.Loh, J.R.Dowing, M.A.Caligiuru, C.D.Bloomfield, E.S.Lander
Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring
SCIENCE Vol286 15 October 1999
[PDFダウンロード][Webサイト]
・DNAマイクロアレイを使った病気診断のはしり。
・データ:Our initial leukemia data set consisted of 38 bone marrow samples (27 ALL, 11 AML) obtained from acute leukemia patient at the time of diagnosis. Affymetrix製。ヒト遺伝子6817プローブ
・AML:acute myeloid leukemia、 ALL:acute lymphoblastic leukemia
・実験1:Class Discovery 38サンプルをSOMs(self-organizing maps)でクラス分け → 結果、4クラスに分離
・実験2:Class Prediction 38サンプルをALLかAMLのどちらかにクラス分け
Predictorとなる50遺伝子の抽出法→"neighborhood analysis"→各遺伝子ごとの発現量をベクトルと見なし、理想状態(理想ベクトル)との距離(Pearson correlation coefficient)で判定。
・「The average prediction strength was lower for samples from one laboratory that used a very different protocol for sample preparation.」
・「Expression levels for each gene are normalized across the samples such that the mean is 0 and the SD is 1.」
・「Most importantly, the technique of class prediction can be applied to distinctions relating to future clinical outcome, such as drug response or survival.」
Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring
SCIENCE Vol286 15 October 1999
[PDFダウンロード][Webサイト]
・DNAマイクロアレイを使った病気診断のはしり。
・データ:Our initial leukemia data set consisted of 38 bone marrow samples (27 ALL, 11 AML) obtained from acute leukemia patient at the time of diagnosis. Affymetrix製。ヒト遺伝子6817プローブ
・AML:acute myeloid leukemia、 ALL:acute lymphoblastic leukemia
・実験1:Class Discovery 38サンプルをSOMs(self-organizing maps)でクラス分け → 結果、4クラスに分離
・実験2:Class Prediction 38サンプルをALLかAMLのどちらかにクラス分け
Predictorとなる50遺伝子の抽出法→"neighborhood analysis"→各遺伝子ごとの発現量をベクトルと見なし、理想状態(理想ベクトル)との距離(Pearson correlation coefficient)で判定。
・「The average prediction strength was lower for samples from one laboratory that used a very different protocol for sample preparation.」
・「Expression levels for each gene are normalized across the samples such that the mean is 0 and the SD is 1.」
・「Most importantly, the technique of class prediction can be applied to distinctions relating to future clinical outcome, such as drug response or survival.」