Ben Y.Reis, Atul S.Butte, and Issac S.Kohane
Extracting knowledge from dynamics in gene expression.
J Biomed Inform. 2001 Feb;34(1):15-27.
[PDFダウンロード]
・遺伝子発現量の時系列データの解析について、従来の静的(statics)な解析ではなく、動的(dynamics)な解析を提案する。
静的解析:各時点の発現量(蛍光強度)の絶対量(赤・黄・緑)を見る
動的解析:2点間の相対量を見る
・静的解析では埋もれてしまう情報(緑→黄への変化等)も、動的解析で抽出できる。
・データ:酵母の刺激応答。10サンプル(時点:計79点)。アノテーションのついた2467遺伝子。[Eisen]
・研究の意義「While many differences among these various approaches exist, all of them cluster according to the absolute level of genetic expression. In this study, we propose an alternate approach involving the dynamics of genetic expression, and formulate a methodology for clustering genes according to changes in genetic expression level.」
・方法「We use the term dynamics to refer to the rate of change of genetic expression over time, calculated as the first-order difference of the genetic expression levels (Et2-Et1, Et3-Et2). This is defferent from the simple temporal pattern of genetic expression (Et1, Et2, Et3) that we refer to as statics.」
・結論「From these results we conclude that to extract all the valuable information from gene expression measurements, one needs a full set of complementary analysis methodologies that capture the dynamics of these systems.」
・ネットワーク図(Fig.4)の見方がイマイチわからない。
《チェック論文》
・Michaels GS, Carr DB, Askenazi M, Fuhrman S, Wen X, Somogyi R.,Cluster analysis and data visualization of large-scale gene expression data.,Pac Symp Biocomput. 1998;:42-53.
Extracting knowledge from dynamics in gene expression.
J Biomed Inform. 2001 Feb;34(1):15-27.
[PDFダウンロード]
・遺伝子発現量の時系列データの解析について、従来の静的(statics)な解析ではなく、動的(dynamics)な解析を提案する。
静的解析:各時点の発現量(蛍光強度)の絶対量(赤・黄・緑)を見る
動的解析:2点間の相対量を見る
・静的解析では埋もれてしまう情報(緑→黄への変化等)も、動的解析で抽出できる。
・データ:酵母の刺激応答。10サンプル(時点:計79点)。アノテーションのついた2467遺伝子。[Eisen]
・研究の意義「While many differences among these various approaches exist, all of them cluster according to the absolute level of genetic expression. In this study, we propose an alternate approach involving the dynamics of genetic expression, and formulate a methodology for clustering genes according to changes in genetic expression level.」
・方法「We use the term dynamics to refer to the rate of change of genetic expression over time, calculated as the first-order difference of the genetic expression levels (Et2-Et1, Et3-Et2). This is defferent from the simple temporal pattern of genetic expression (Et1, Et2, Et3) that we refer to as statics.」
・結論「From these results we conclude that to extract all the valuable information from gene expression measurements, one needs a full set of complementary analysis methodologies that capture the dynamics of these systems.」
・ネットワーク図(Fig.4)の見方がイマイチわからない。
《チェック論文》
・Michaels GS, Carr DB, Askenazi M, Fuhrman S, Wen X, Somogyi R.,Cluster analysis and data visualization of large-scale gene expression data.,Pac Symp Biocomput. 1998;:42-53.