Amir Ben-Dor, Nir Friedman, and Zohar Yakhini.
Scoring genes for relevance.
Technical Report 2000-38
[PDF][Web Site]
・遺伝子ランキング法の性能比較。
・データ
1.Colon cancer data set,tumor(38)/normal(20) [Alon]
2.Leukemia data set, AML(25)/ALL(47) [Golub]
3.Lymphoma data set, DLBCL(46)/8 types of tissues(50) [Alizadeh]
・比較した遺伝子ランキング法
1.TNoM, Threshould Number of Misclassification [Ben-dor]
2.Info, Mutual Information Score, TNoMの改良版
3.Logistic regression
4.Gaussian based score [Slonim]
・クラス分け法: naive Bayesian classifier
・クラス分け評価法:LOOCV
・結果「Our analysis shows that relevant genes are significantly abundant in actual gene expression data. We also demonstrate that by restricting classification rules to examine these genes, performance improves, often dramatically.」
Scoring genes for relevance.
Technical Report 2000-38
[PDF][Web Site]
・遺伝子ランキング法の性能比較。
・データ
1.Colon cancer data set,tumor(38)/normal(20) [Alon]
2.Leukemia data set, AML(25)/ALL(47) [Golub]
3.Lymphoma data set, DLBCL(46)/8 types of tissues(50) [Alizadeh]
・比較した遺伝子ランキング法
1.TNoM, Threshould Number of Misclassification [Ben-dor]
2.Info, Mutual Information Score, TNoMの改良版
3.Logistic regression
4.Gaussian based score [Slonim]
・クラス分け法: naive Bayesian classifier
・クラス分け評価法:LOOCV
・結果「Our analysis shows that relevant genes are significantly abundant in actual gene expression data. We also demonstrate that by restricting classification rules to examine these genes, performance improves, often dramatically.」