方向余弦とは解析幾何の用語であろうか。いま方向余弦と入れようとしたら、方向予言と出てきた。
方向余弦とは英語ではdirection cosineとでもいうのだろうか。ある直線の直交座標系のx, y, z軸となす角の余弦をいう。ある直線をその直線が直交座標系の原点Oを通るように平行移動させて(回転移動させてはいけない、方向が変わってしまうので)、その直線の直交座標系のx, y, z軸となす角をA, B, Cとする。このときcos A, cos B, cos Cをその直線の方向余弦という。
よくわかる数学書と言われている、マセマの馬場先生の『ベクトル解析』にも詳しく見たわけではないが、このような説明である。ところがこれだけではまだ釈然としない感じを私は持っていた。
方向余弦についてあまり違和感を持たなくなったのは、空間の直交座標系に原点Oから大きさ1の各座標軸に沿ったベクトル\bm{e}_{1}, \bm{e}_{2}, \bm{e}_{3}を考え、これとその原点を通る直線のなす角の方向余弦は、その直線上の大きさ1のべクトル\bm{u}とのスカラー積(内積)をとれば、それが方向余弦であると理解してようやく方向余弦について納得した感じをもった。
すなわち、
cos A=\bm{e}_{1}・\bm{u},
cos B=\bm{e}_{2}・\bm{u},
cos C=\bm{e}_{3}・\bm{u}
である。・はスカラー積のつもりである。単なる数の積をここでは意味しない。
スカラー積を数学書によっては<\bm{e}_{1}, \bm{u}>のように表すことも最近では多い。\bm{e}_{1}・\bm{u}:=<\bm{e}_{1}, \bm{u}>である。
私みたいに物わかりがわるい人はあまりいないと思うが、他の人は方向余弦をどのように理解しているのだろうか。すんなりと受け入れておられるのだろうか。